Correction du Brevet blanc de mathématiques du vendredi 6 février

Exercice 1:

$\boxed{\frac{7}{4} - \frac{3}{4} \times \frac{2}{5}} =$	$\frac{2}{5}$	$\left(\frac{29}{20}\right)$	1,45	$\frac{116}{80}$
$3 - 3 \div 7 =$	$\left(\frac{18}{7}\right)$	0	2,571428571	$\frac{12}{21}$
J'ai mangé les trois quarts de la moitié de la galette que m'a laissé mon frère, il reste donc	rien	un peu de galette	un quart de la galette	un huitième de la galette
$\frac{7^4 \times 7^{-8}}{7^{-11} \times 7^5} =$	7^{12}	49)	7^{-10}	(7 ²)
La notation scientifique de 25 est	25×10^{0}	$2,5 \times 10^{-1}$	$0,25\times10^2$	$(2, 5 \times 10^1)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$0,06 \times 10^{-9}$	$0,06 \times 10^{-19}$	6×10^{-7}	6×10^{-11}

Exercice 2:

1. Calcul du PGCD de 1755 et 1053 à l'aide de l'algorithme d'Euclide :

- 2. Pour qu'une fraction soit irréductible, il faut que son numérateur et son dénominateur soient premiers entre eux ; donc on peut diviser le numérateur et le dénominateur d'une fraction par leur PGCD pour obtenir une fraction irréductible : $\frac{1053}{1755} = \frac{1053 : 351}{1755 : 351} = \frac{3}{5}$
- 3. (a) Le nombre de lots doit diviser le nombre de cônes c'est-à-dire 1755 et le nombre de porcelaines, c'est-à-dire 1053. Ce nombre doit donc être un diviseur de 1755 et de 1075. De plus il veut faire le plus grand nombre de lots possible ; ce nombre est donc le PGCD de 1755 et 1053 c'est-à-dire 351 d'après 1.

Le collectionneur pourra donc faire 351 lots.

(b) 1053:351=3 et 1755:351=5 Chaque lot contiendra donc 3 porcelaines et 5 cônes.

Exercice 3:

1. Les droites (AB) et (ED) sont sécantes en C et les droites (BD) et (AE) sont parallèles.

D'après le théorème de Thalès, on a : $\frac{CB}{CA} = \frac{CD}{CE} = \frac{BD}{AE}$

$$\frac{\text{CD}}{6} = \frac{1,1}{1,5}$$
 $\text{CD} = \frac{1,1 \times 6}{1,5} = 4,4 \text{ m}$

- 2. ED = EC CD = 6 4.4 = 1.60 m
- 3. D'après les calculs précédents, si une fillette de 1,10 m passe à 1,60 m derrière la voiture, le conducteur peut à peine voir ses cheveux donc si elle passe à 1,40 m derrière la voiture, elle sera encore davantage dans la partie grisée donc totalement invisible pour le conducteur.

Exercice 4:

1. Calcul du volume V_f de la flûte à champagne :

$$V_f = \frac{1}{3}$$
 Aire de la base × hauteur = $\frac{1}{3}$ × IG^2 ×EF = $\frac{1}{3}$ × 16 × 12 = 64

Le volume d'une flûte à champagne est de 64 cm³.

2. Calcul du volume V_c occupé par le champagne :

 $V_c = \frac{3}{4} \times V_f = \frac{3}{4} \times 64 = 48$ La flûte est remplie d'un volume de champagne de 48 cm³.

3. (a) Calcul du volume V_g d'un glaçon :

 $V_g = \text{Cot}\acute{e}^3 = 1,5^3 = 3,375$ Un glaçon a un volume de 3,375 cm³. (b) Calcul du volume immergé du glaçon (celui qui est dans le champagne) :

$$\frac{4}{5}$$
 V_g = $\frac{4}{5}$ × 3,375 = 2,7 Donc 2,7 cm³ de glace se trouve dans le champagne.

$$V_f - V_g = 64 - 16 = 16$$
 Il faut que le volume de glace dépassent 16 cm³ pour que la flûte déborde

 $16:2,7\approx5,9$ Il faudra au minimum 6 glaçons pour que la flûte déborde.

Exercice 5:

1.

(a)
$$10 \times 5 + 12 \times 12 + 9 \times 14 + 7 \times 15 + 5 \times 16 + 6 \times 18 + 4 \times 20 = 693$$

En décembre, les élèves ont déjà vendu 693 cases.

- (b) Chaque case rapporte 2€ donc 693 × 2 = 1386 Les 693 cases représentent 1386 €.
- (c) Il y a 5 + 12 + 9 + 7 = 33 élèves sur 48 qui ont vendu 15 cases ou moins

$$\frac{33}{48} \times 100 \approx 69$$
 69% des élèves ont donc vendu 15 cases ou moins.

(d) m =
$$\frac{10 \times 5 + 12 \times 12 + 9 \times 14 + 7 \times 15 + 5 \times 16 + 6 \times 18 + 4 \times 20}{48} \approx 14$$

En moyenne, les élèves ont vendu 14 cases.

(a) Il y a 92 lots sur les 960 cases vendues

$$\frac{92}{960} \approx 0.09$$
 La probabilité de gagner un lot est de 0.09.

(b) Il y a 20 clés USB sur les 960 cases vendues

$$\frac{20}{960} \approx 0,02$$
 La probabilité de gagner une clé USB est de 0,02.

Exercice 6:

1. (a)
$$P_{ADC} = AD + DC + CA$$
 $P_{ABC} = AB + BC + CA$ $144 = 16 + 65 + DC$ $154 = AB + 56 + 65$ $DC = 144 - (16 + 65)$ $AB + 154 - (56 + 65)$ $DC = 63 \text{ m}$ $AB = 33 \text{ m}$

(b) Périmètre du champ =
$$P_{ABCD}$$
 = $AB + BC + CD + DA = 56 + 63 + 16 + 33 = 168 m$

2. Dans le triangle ADC, le plus grand côté est [AC] $AD^2 + DC^2 = 16^2 + 63^2 = 256 + 3969 = 4225$ $AC^2 = 65^2 = 4225$ et Donc AC² = AD² + DC², d'après la réciproque du théorème de Pythagore, le triangle ADC est rectangle en D.

3. Aire du champ =
$$A_{ABCD} = A_{ABC} + A_{ADC} = \frac{AB \times BC}{2} + \frac{AD \times DC}{2} = \frac{33 \times 56}{2} + \frac{16 \times 63}{2}$$

= 924 + 504 = 1428 m²

4.
$$168 \times 0.85 = 142.8$$
 Jean-Michel va payer $142.80 \in$ pour clôturer son champ.

Exercice 7:

Calcul de la surface corporelle des deux enfants :

$$S_{Lou} = \sqrt{\frac{105 \times 17.5}{3600}} \approx 0.71$$
 Lou a une surface corporelle de 0,71 m² environ
$$S_{Joe} = \sqrt{\frac{150 \times 50}{3600}} \approx 1,44$$
 Joe a une surface corporelle de 1,44 m² environ

La dose de charge doit être de 70 mg par mètre carré

Dose pour Lou = $0.71 \times 70 = 49.7$ Donc 50 mg semble être la dose appropriée pour Lou. Dose pour Joe = $1.44 \times 70 = 100.8$ Donc 100 mg semble être la dose appropriée pour Joe; cependant il est spécifié que l'on ne peut pas dépasser 70 mg par jour donc il faudra administrer 70 mg à Joe et pas 100 mg.