DEVOIR À LA MAISON N°2 Corrigé

EXERCICE 1.

 \bullet Soit r le rayon du cercle.

L'aire du secteur circulaire saillant ABE est $\pi \frac{r^2}{2}\alpha$. (DB) est tangente à \mathcal{C} en B dont les droites (AB) et (BD) sont perpendiculaires : ABD est donc rectangle en D et il s'ensuit que $BD = R \tan \alpha$ et que l'aire du triangle ABD est $\frac{r^2}{2} \tan \alpha$.

L'aire gris clair vaut donc $\frac{r^2}{2} \tan \alpha - \pi \frac{r^2}{2} \alpha$ et on cherche à résoudre :

$$\frac{r^2}{2}\tan\alpha - \pi \frac{r^2}{2}\alpha = \pi \frac{r^2}{2}\alpha$$

ce qui équivaut à $\tan \alpha = 2\alpha$

•• Considérons la fonction f définie sur l'intervalle $I = \left[0, \frac{\pi}{2}\right]$ par $f(x) = \tan x - 2x$.

 $\lim_{x\to 0^+}f(x)=0$ (ici, on ne peut considérer l'image de 0 par f puisque $0\not\in I.)$ $\lim_{x \to (\frac{\pi}{2})^+} f(x) = +\infty.$

f est dérivable, donc continue, sur I en tant que différence de fonctions dérivables sur cet intervalle. Pour tout $x \in I$, $f(x) = 1 + \tan^2 x - 2 = \tan^2 x - 1 = (\tan x - 1)(\tan x + 1)$.

Or sur I, $\tan x + 1 > 0$ et par ailleurs : • $\tan x - 1 = 0$ ssi $x = \frac{\pi}{\frac{4}{\pi}}$ • $\tan x - 1 > 0$ ssi $x > \frac{\pi}{4}$

On en déduit le tableau de variations suivant :

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$
f'(x)		- 0 +	
f(x)		$\begin{array}{c} 0 \\ 1 - \frac{\pi}{2} \end{array}$	

• • • Sur $]0; \frac{\pi}{4}], f(x) < 0.$

Sur $\left[\frac{\pi}{4}; \frac{\pi}{2}\right]$, f est continue et prend des valeurs positives et négatives. D'après le théorème des valeurs intermédiaires, il existe au moins un réel α tel que $f(\alpha) = 0$.

Comme f est strictement croissante sur $\left|\frac{\pi}{4}; \frac{\pi}{2}\right|$, α est unique.

On en déduit que l'équation $\tan x - 2x = 0$ admet une unique solution sur I.

Par la calculatrice, il apparaît que f(1,16) < 0 < f(1,17). f étant strictement croissante, il vient $1,16 < \alpha < 1$ 1, 17.

EXERCICE 2. La fonction $g: x \mapsto f(x) - x$ est continue sur [0;1] en tant que différence de fonctions continues.

```
g(0) = f(0) \ge 0 puisque f(0) \in [0; 1].

g(1) = f(1) - 1 \le 0 puique f(1) \in [0; 1].
```

g prend donc des valeurs positives et négatives sur [0;1]: le théorème des valeurs intermédiaires assure qu'il existe un réel c tel que g(c)=0, c'est-à-dire f(c)=c.

Si maintenant on remplace l'intervalle fermé [0;1] par l'intervalle ouvert]0;1[, le résultat est en défaut. En effet, la fonction $x\mapsto x^2$ est bien continue sur]0;1[, à valeurs dans]0;1[, mais l'équation $x^2=x$ n'a pas de solution dans cet intervalle.