DEVOIR À LA MAISON N°1 Corrigé

Soit f la fonction de $\mathbb R$ vers $\mathbb R$ définie par $f(x)=\frac{x^3}{x^2+x+1}$. On appelle Γ sa courbe représentative de f dans le plan muni d'un repère $(O; \overrightarrow{i}, \overrightarrow{j})$.

- 1. Soit $x \in \mathbb{R}$: f(x) est défini ssi $x^2 + x + 1 \neq 0$. Résolvons dans \mathbb{R} l'équation $x^2 + x + 1 = 0$: cette équation du second de degré a pour discriminant le nombre -3, qui est strictement négatif et ainsi, pour tout réel $x, x^2 + x + 1 \neq 0$: $D = \mathbb{R}$.
- 2. A l'infini, une fonction rationnelle se comporte comme le quotient des termes de plus haut degré dans son numérateur et dans son dénominateur.

Pour tout $x \in \mathbb{R}^*$, $\frac{x^3}{x^2} = x$ et donc, $\lim_{x \to -\infty} f(x) = -\infty$ et $\lim_{x \to +\infty} f(x) = +\infty$

3. Pour tout réel x,

$$f(x) = \frac{x(x^2 + x + 1) - x^2 - x}{x^2 + x + 1}$$
$$= x - \frac{x^2 + x + 1 - 1}{x^2 + x + 1}$$
$$= x - 1 + \frac{1}{x^2 + x + 1}$$

4. Pour tout x in \mathbb{R} , $f(x)-x=\frac{1}{x^2+x+1}$ et de façon évidente, $\lim_{x\to-\infty}\frac{1}{x^2+x+1}=0$ et $\lim_{x\to+\infty}\frac{1}{x^2+x+1}=0$

Cela prouve que la droite Δ d'équation y=x est asymptote à Γ en plus et moins l'infini.

5. Le trinôme $x^2 + x + 1$ a un discriminant strictement négatif et il est donc de signe constant sur \mathbb{R} , ce signe étant indiqué par le coefficient de x^2 qui est 1. Il s'ensuit que pour tout réel x, f(x) - x > 0 et que sur \mathbb{R} , Γ est au dessus de Δ

EXERCICE 2. Soit m un nombre réel fixé.

Le degré du numérateur de la fraction rationnelle u(x) est 2 si $m^2 - m \neq 0$, c'est-à-dire $m \neq 0$ et $m \neq 1$.

1er cas : $m \neq 0$ et $m \neq 1$. Dans ce cas, le degré du dénominateur de u(x) est 2 aussi et en $+\infty$, cette fraction se comporte comme le quotient $\frac{m^2 - m}{m - 1} = m$.

La limite de u en $+\infty$ est m.

2e cas: m=0. Dans ce cas, $u(x)=\frac{1}{-x^2+x-2}$ et en $+\infty$, la limite de cette expression est 0. 3e cas: m=1. Dans ce cas, $u(x)=\frac{2x-1}{x-2}$ et en $+\infty$, la limite de cette expression vaut 2.