

Espaces vectoriels de dimension finie

1 Base

Exercice 1

Montrer que les vecteurs $\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\}$ forment une base de \mathbb{R}^3 . Calculer les coordonnées respectives des vecteurs $\begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}$ dans cette base.

Correction ▼ [000979]

Exercice 2

- 1. Montrer que les vecteurs $x_1 = (0,1,1)$, $x_2 = (1,0,1)$ et $x_3 = (1,1,0)$ forment une base de \mathbb{R}^3 . Trouver dans cette base les composantes du vecteur x = (1,1,1).
- 2. Donner, dans \mathbb{R}^3 , un exemple de famille libre, qui n'est pas génératrice.
- 3. Donner, dans \mathbb{R}^3 , un exemple de famille génératrice, mais qui n'est pas libre.

Correction ▼ [000981]

Exercice 3

Vrai ou faux ? On désigne par E un \mathbb{R} -espace vectoriel de dimension finie.

- 1. Si les vecteurs x, y, z sont deux à deux non colinéaires, alors la famille x, y, z est libre.
- 2. Soit $x_1, x_2, ..., x_p$ une famille de vecteurs. Si aucun n'est une combinaison linéaire des autres, la famille est libre.

Indication ▼ Correction ▼ [000985]

Exercice 4

Dans \mathbb{R}^3 , les vecteurs suivants forment-ils une base? Sinon décrire le sous-espace qu'ils engendrent.

1.
$$v_1 = (1,1,1), v_2 = (3,0,-1), v_3 = (-1,1,-1).$$

2.
$$v_1 = (1,2,3), v_2 = (3,0,-1), v_3 = (1,8,13).$$

3.
$$v_1 = (1, 2, -3), v_2 = (1, 0, -1), v_3 = (1, 10, -11).$$

Correction ▼ [000987]

Exercice 5

1. Montrer qu'on peut écrire le polynôme $F=3X-X^2+8X^3$ sous la forme $F=a+b(1-X)+c(X-X^2)+d(X^2-X^3)$ (calculer a,b,c,d réels), et aussi sous la forme $F=\alpha+\beta(1+X)+\gamma(1+X+X^2)+\delta(1+X+X^2+X^3)$ (calculer $\alpha,\beta,\gamma,\delta$ réels).

2. Soit \mathcal{P}_3 l'espace vectoriel des polynômes de degré ≤ 3 . Vérifier que les ensembles suivants sont des bases de \mathcal{P}_3 : $B_1 = \{1, X, X^2, X^3\}$, $B_2 = \{1, 1 - X, X - X^2, X^2 - X^3\}$, $B_3 = \{1, 1 + X, 1 + X + X^2, 1 + X + X^2 + X^3\}$.

Correction ▼ [000992]

Exercice 6

Déterminer pour quelles valeurs de $t \in \mathbb{R}$ les vecteurs $\begin{pmatrix} 1 \\ 0 \\ t \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ t \end{pmatrix}$, $\begin{pmatrix} t \\ 0 \\ 1 \end{pmatrix}$ forment une base de \mathbb{R}^3 .

Correction ▼ [000996]

Exercice 7

- 1. Montrer que les vecteurs $\mathbf{w}_1 = (1, -1, i), \mathbf{w}_2 = (-1, i, 1), \mathbf{w}_3 = (i, 1, -1)$ forment une base de \mathbb{C}^3 .
- 2. Calculer les composantes de $\mathbf{w} = (1+i, 1-i, i)$ dans cette base.

Correction ▼ [001006]

2 Dimension

Exercice 8

Si E est un espace vectoriel de dimension finie, F et G deux sous-espaces de E, montrer que : $\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G)$.

Indication ▼ Correction ▼ [001015]

Exercice 9

Montrer que tout sous-espace vectoriel d'un espace vectoriel de dimension finie est de dimension finie.

Indication ▼ Correction ▼ [001016]

Exercice 10

On considère, dans \mathbb{R}^4 , les vecteurs : $e_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$, $e_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 3 \end{pmatrix}$, $e_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, $e_4 = \begin{pmatrix} -1 \\ 0 \\ -1 \\ 2 \end{pmatrix}$, $e_5 = \begin{pmatrix} 2 \\ 3 \\ 0 \\ 1 \end{pmatrix}$.

Soient E l'espace vectoriel engendré par e_1, e_2, e_3 et F celui engendré par e_4, e_5 . Calculer les dimensions respectives de E, F, $E \cap F$, E + F.

Correction ▼ [001019]

Exercice 11

Soient *E* et *F* de dimensions finies et $u, v \in \mathcal{L}(E, F)$.

- 1. Montrer que $rg(u+v) \le rg(u) + rg(v)$.
- 2. En déduire que $|rg(u) rg(v)| \le rg(u + v)$.

Correction ▼ [001027]

Indication pour l'exercice 3 ▲	
-	

On peut utiliser des familles libres.

Correction de l'exercice 1 A

$$\det\begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix} = 3 \neq 0 \text{ donc la famille } \mathscr{B} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\} \text{ est une base de } \mathbb{R}^3.$$

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}. \text{ Ses coordonnées dans } \mathscr{B} \text{ sont donc } (1/3, -1/3, 1/3).$$

$$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} - \frac{2}{3} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}. \text{ Ses coordonnées dans } \mathscr{B} \text{ sont donc } (1/3, -1/3, -2/3).$$

$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}. \text{ Donc ses coordonnées dans } \mathscr{B} \text{ sont } (2/3, -2/3, -1/3).$$

Correction de l'exercice 2 A

- 1. Le vecteur $x = \frac{1}{2}x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3$. Donc dans la base (x_1, x_2, x_3) le coordonnées de x sont $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$.
- 2. Par exemple la famille $\{(1,0,0),(0,1,0)\}$ est libre dans \mathbb{R}^3 mais pas génératrice.
- 3. La famille $\{(1,0,0),(0,1,0),(0,0,1),(1,1,1)\}$ est génératrice dans \mathbb{R}^3 mais pas libre.

Correction de l'exercice 3

- 1. Faux. Par exemple dans \mathbb{R}^3 , x = (1,0,0), y = (0,1,0), z = (1,1,0).
- 2. Vrai. Soit une combinaison linéaire nulle $\lambda_1 x_1 + \cdots + \lambda_p x_p = 0$. Supposons qu'un des coefficient est non nul : par exemple $\lambda_1 \neq 0$. Alors on écrit $x_1 = -\frac{\lambda_2}{\lambda_1} x_2 \cdots \frac{\lambda_p}{\lambda_1} x_p$. Donc x_1 est une combinaison linéaire de $\{x_2, \dots, x_p\}$. Ce qui contredit l'hypothèse de l'énoncé, donc tous les coefficients sont nuls. Donc $\{x_1, \dots, x_p\}$ est une famille libre.

Correction de l'exercice 4 A

- 1. C'est une base.
- 2. Ce n'est pas une base : $v_3 = 4v_1 v_2$. Donc l'espace $Vect(v_1, v_2, v_3) = Vect(v_1, v_2)$.
- 3. Ce n'est pas une base : $v_3 = 5v_1 4v_2$. Donc l'espace $Vect(v_1, v_2, v_3) = Vect(v_1, v_2)$.

Correction de l'exercice 5

- 1. On trouve a = 10, b = -10, c = -7, d = -8. Puis $\alpha = -3, \beta = 4, \gamma = -9, \delta = 8$.
- 2. Plus généralement on montre qu'une famille de polynômes $\{P_k\}_{k=1,\dots,n}$ avec $\deg P_i = i$ forme une base de l'espace vectoriel \mathscr{P}_n de polynômes de degré $\leq n$.

4

Correction de l'exercice 6 ▲

C'est une base pour $t \neq \pm 1$.

Correction de l'exercice 7

1. C'est bien une base.

2. On cherche $a,b,c \in \mathbb{C}$ tels que $aw_1 + bw_2 + c_3w_3 = w$. Il s'agit donc de résoudre le système :

$$\begin{cases} a-b+ic &= 1+i \\ -a+ib+c &= 1-i \\ ia+b-c &= i \end{cases}$$

On trouve a = 0, $b = \frac{1}{2}(1-i)$, $c = \frac{1}{2}(1-3i)$. Donc les coordonnées de w dans la base (w_1, w_2, w_3) sont $(0, \frac{1}{2}(1-i), \frac{1}{2}(1-3i))$.

Correction de l'exercice 8 A

1. $F \cap G$ est un sous-espace vectoriel de E donc est de dimension finie. Soit $(e_1, \dots e_k)$ une base de $F \cap G$ avec $k = \dim F \cap G$.

 $(e_1, \dots e_k)$ est une famille libre dans F donc on peut la compléter en une base de F par le théorème de la base incomplète. Soit donc (f_1, \dots, f_ℓ) des vecteurs de F tels que $(e_1, \dots e_k, f_1, \dots, f_\ell)$ soit une base de F. Nous savons que $k + \ell = \dim F$. Remarquons que les vecteurs f_i sont dans $F \setminus G$.

Nous repartons de la famille $(e_1, \dots e_k)$ mais cette fois nous la complétons en une base de G: soit donc (g_1, \dots, g_m) des vecteurs de G tels que $(e_1, \dots e_k, g_1, \dots, g_m)$ soit une base de G. Nous savons que $k+m=\dim G$. Remarquons que les vecteurs g_i sont dans $G\setminus F$.

2. Montrons que $\mathscr{B} = (e_1, \dots, e_k, f_1, \dots, f_\ell, g_1, \dots, g_m)$ est une base de F + G.

C'est une famille génératrice car $F = \text{Vect}(e_1, \dots, e_k, f_1, \dots, f_\ell) \subset \text{Vect}(\mathcal{B})$ et $G = \text{Vect}(e_1, \dots, e_k, g_1, \dots, g_m) \subset \text{Vect}(\mathcal{B})$. Donc $F + G \subset \text{Vect}(\mathcal{B})$.

C'est une famille libre : soit une combinaison linéaire nulle :

$$a_1e_1 + \dots + a_ke_k + b_1f_1 + \dots + b_\ell f_\ell + c_1g_1 + \dots + c_mg_m = 0.$$

Notons $e = a_1e_1 + ... + a_ke_k$, $f = b_1f_1 + ... + b_\ell f_\ell$, $g = c_1g_1 + ... + c_mg_m$. Donc la combinaison linéaire devient :

$$e + f + g = 0$$
.

Donc g=-e-f, or e et f sont dans F donc g appartient à F. Or les vecteurs g_i ne sont pas dans F. Donc $g=c_1g_1+\ldots+c_mg_m$ est nécessairement le vecteur nul. Nous obtenons $c_1g_1+\ldots+c_mg_m=0$ c'est donc une combinaison linéaire nulle pour la famille libre (g_1,\ldots,g_m) . Donc tous les coefficients c_1,\ldots,c_m sont nuls.

Le reste de l'équation devient $a_1e_1 + \ldots + a_ke_k + b_1f_1 + \ldots + b_\ell f_\ell = 0$, or $(e_1, \ldots e_k, f_1, \ldots, f_\ell)$ est une base de F donc tous les coefficients $a_1, \ldots, a_k, b_1, \ldots, b_\ell$ sont nuls.

Bilan : tous les coefficients sont nuls donc la famille est libre. Comme elle était génératrice, c'est une base.

3. Puisque \mathcal{B} est une base de F+G alors la dimension de F+G est le nombre de vecteurs de la base \mathcal{B} :

$$\dim(F+G) = k + \ell + m$$
.

Or $k = \dim F \cap G$, $\ell = \dim F - k$, $m = \dim G - k$, donc

$$\dim(F+G) = \dim F + \dim G - \dim(F \cap G).$$

Correction de l'exercice 9 ▲

Soit E un espace vectoriel de dimension n et F un sous-espace vectoriel. Supposons que F ne soit pas de dimension finie, alors il existe $v_1, \ldots, v_{n+1}, n+1$ vecteurs de F linéairement indépendants dans F. Mais il sont aussi linéairement indépendants dans E. Donc la dimension de E est au moins n+1. Contradiction.

Deux remarques:

- En fait on a même montrer que la dimension de F est plus petite que la dimension de E.

On a utiliser le résultat suivant : si E admet une famille libre à k éléments alors la dimension de E est plus grande que k (ou est infini). Ce résultat est une conséquence immédiate du théorème de la base incomplète.

Correction de l'exercice 10 ▲

E est engendré par trois vecteurs et F est engendré par deux vecteurs. Donc dim $(E) \le 3$ et dim $(F) \le 2$.

Clairement e_4 et e_5 ne sont pas liés donc dim $(F) \ge 2$ c'est à dire dim (F) = 2. Enfin, $\det \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix} = -1 \ne$

0. La famille $\{e_1, e_2, e_3\}$ est donc libre, soit dim $(E) \ge 3$ i.e. dim (E) = 3.

 $E \cap F \subset F$ donc dim $(E \cap F) \le 2$. De plus : dim $(E + F) = \dim(E) + \dim(F) - \dim(E \cap F)$. Comme $E + F \subset \mathbb{R}^4$, on a dim $(E + F) \le 4$ d'où on tire l'inégalité $1 \ge \dim(E \cap F)$. Donc soit dim $(E \cap F) = 1$ soit dim $(E \cap F) = 2$.

Supposons que dim $(E \cap F)$ soit égale à 2. Comme $E \cap F \subset F$ on aurait dans ce cas $E \cap F = F$. En particulier il existerait $\alpha, \beta, \gamma \in \mathbb{R}$ tels que $e_4 = \alpha e_1 + \beta e_2 + \gamma e_3$. On vérifie aisément que ce n'est pas le cas, donc que dim $(E \cap F)$ n'est pas égale à 2.

On peut donc conclure : dim $(E \cap F) = 1$ puis dim (E + F) = 4.

Correction de l'exercice 11 ▲

- 1. Par la formule $\dim(F+G) = \dim(F) + \dim(G) \dim(F\cap G)$, on sait que $\dim(F+G) \leq \dim(F) + \dim(G)$. Pour $F = \operatorname{Im} u$ et $G = \operatorname{Im} v$ on obtient : $\dim(\operatorname{Im} u + \operatorname{Im} v) \leq \dim \operatorname{Im} u + \dim \operatorname{Im} v$. Or $\operatorname{Im} u + \operatorname{Im} v = \operatorname{Im}(u+v)$. Donc $\operatorname{rg}(u+v) \leq \operatorname{rg}(u) + \operatorname{rg}(v)$.
- 2. On applique la formule précédente à u + v et -v: $rg((u + v) + (-v)) \le rg(u + v) + rg(-v)$, or rg(-v) = rg(v) donc $rg(u) \le rg(u + v) + rg(v)$. Soit $rg(u) rg(v) \le rg(u + v)$. On recommence en échangeant u et v pour obtenir: $|rg(u) rg(v)| \le rg(u + v)$.