Cours maths terminale

Le théorème de Bézout : cours de maths en terminale S


Mise à jour le 16 avril 2018  |   Signalez une ERREUR  | 

cours de maths en terminale S https://www.mathovore.fr/wp-content/uploads/2016/11/cours-maths-terminale.png https://www.mathovore.fr/wp-content/uploads/2016/11/cours-maths-terminale-150x150.png0 https://www.mathovore.fr/le-theoreme-de-bezout#respond
330
Le théorème de Bézout dans un cours d’arithmétique pour les élèves de terminale S spécialité.

I.Enoncé du théorème de Bézout :

Théorème :

a et b sont deux entiers naturels non nuls.Dire que a et b sont premiers entre eux équivaut à dire il existe deux entiers relatifs u et v tels que 

au + bv = 1.

Démonstration :

1.Supposons qu’il existe deux entiers u et v tels que au + bv = 1 et prouvons que a et b sont premiers entre eux.

On note \Delta\,=PGCD(a,b)

\Delta divise a et b donc \Delta divise au + bv.Comme au + bv  = 1, \Delta = 1 et a et b sont premiers entre eux.

2.Supposons que a et b premiers entre eux et démontrons que 1 s’écrit sous la forme au + bv.

Soit \varphi l’ensemble des nombres sous la forme au + bv avec u\,\in\,\mathbb{Z} et v\,\in\,\mathbb{Z}.

L’ensemble \varphi n’est pas vide car pour u = 1 et v = 0, a\in\varphi.Il en est de même pour b.

Ains \varphi contient des entiers strictement positive, et, parmi eux, un plsu petit que tous les autres.

Notons m=au_1+bv_1 ce plus petit élément.

La division euclidienne de a par m s’écrit a=mq+r avec 0\leq\,\,r<m

soit r=a-mq=a-(au_1+bv_1)q=a(1-u_1q)+b(-v_1q).

Ainsi r\in\varphi.Or m est le plus petit entier strictement positif de \varphi donc r = 0.

Ainsi m divise a.On montre de même que m divise b.

Comme a et b sont premiers entre eux, m=1 et au_1+bv_1=1.

En pratique, comment trouver u et v ?

Pour déterminer les coefficient, on utilise l’algorithme d’Euclide.Donnons un exemple.

On cherche un couple (x;y) d’entiers relatifs tels que 89x+41y=1 (1).

89 et 41 sont premiers entre eux donc il existe deux entiers relatifs x et y vérifiant (1).

On pose a=89 et b=41.

89=41\times  \,2+7 donc 7=89-2\times  \,41=a-2b.

41=7\times  \,5+\,6 donc 6=41-7\times  \,5=b-5(a-2b)=11b-5a.

7=6\times  \,1\,+1 donc 1=7-6=a-2b-11b+5a=6a-13b.

Soit 89\times  \,6\,+41\times  (-13)=1.

Ainsi (x_0;y_0)=(6;-13) est solution de (1).

II.Une nouvelle caractérisation du PGCD

Théorème :

a et b sont deux entiers naturels non nuls.Dire que \Delta est le PGCD(a,b) équivaut à dire que \Delta est un diviseur de a et b et il existe deux entiers relatifs u et v tels que \Delta\,=au+bv.

Le théorème de Bézout : cours de maths en terminale S
Voter pour cette fiche



Les derniers topics du forum

Retrouvez les derniers topics ajoutés et des demandes d'aide formulées par les élèves. Une communauté dynamique d'aide en ligne qui vous permettra de résoudre vos exercices, DM ou de résoudre un problème dont vous n'arrivez pas à trouver la solution.


D'autres documents similaires

Inscription gratuite à Mathovore. Rejoignez les 128169 Mathovoristes, inscription gratuite.

https://www.mathovore.fr/wp-content/uploads/2016/11/cours-maths-terminale.png
Mathovore

GRATUIT
VOIR