Cours maths terminale

Le raisonnement par récurrence : cours de maths en terminale S


Mise à jour le 16 avril 2018  |   Signalez une ERREUR  | 

cours de maths en terminale S https://www.mathovore.fr/wp-content/uploads/2016/11/cours-maths-terminale.png https://www.mathovore.fr/wp-content/uploads/2016/11/cours-maths-terminale-150x150.png0 https://www.mathovore.fr/le-raisonnement-par-recurrence-cours-maths-23#respond
159
Le raisonnement par récurrence dans un cours de maths en terminale S et la rédaction de la démonstration.

1.Principe de récurrence et ses axiomes :

Axiome :

Soit P(n) une propriété qui dépend d’un entier naturel n.

Si les deux conditions suivantes sont réunies :
,
• P(n) est vraie pour le rang n = 0 ;

• Si pour tout entier n, P(n) est vérifiée implique P(n+1) est vérifiée ;

Alors pour tout entier n, P(n) est vraie.

Exemple :

On considère la suite U_n définie par :

\forall n \in \mathbb{N} \,,\,\{{U_0=1\atop U_{n+1}=\frac{1}{4}U_n+3}

Montrons par récurrence, sur l’entier n, que :

\forall n \in \mathbb{N} \,,\,U_n\,\le\,4

Soit la propriété de récurrence suivante :

\fbox{P(n):''Pour\,\,n \in \mathbb{N} \,,\,U_n\,\le\,4''}

Initialisation :

Montrons que P(0) est vraie.

D’apres les hypothèses, U_0=1\,\le\,4

Donc P(0) vraie .

Hérédité de la propriété :

Supposons qu’il existe un entier n \in \mathbb{N} tel que P(n) soit vraie.

Montrons que P(n+1) reste vraie .

Comme P(n) est vraie.

alors U_n\,\le\,4

\frac{1}{4}U_n\,\le\,\frac{4}{4}

\frac{1}{4}U_n\,+\,3\,\le\,1+3

U_{n+1}\,\le\,4

donc P(n+1) est vraie .

Conclusion :

(P(0); \forall n \in \mathbb{N}\,,\,P(n)\Longrightarrow\,\,P(n+1))

donc d’après le principe de récurrence :

 \fbox{\forall n \in \mathbb{N}\,,\,\,,\,U_n\,\le\,4)}

Le raisonnement par récurrence : cours de maths en terminale S
3.8 (75.79%) 19 votes



Les derniers topics du forum

Retrouvez les derniers topics ajoutés et des demandes d'aide formulées par les élèves. Une communauté dynamique d'aide en ligne qui vous permettra de résoudre vos exercices, DM ou de résoudre un problème dont vous n'arrivez pas à trouver la solution.


D'autres documents similaires

Inscription gratuite à Mathovore. Rejoignez les 132218 Mathovoristes, inscription gratuite.

https://www.mathovore.fr/wp-content/uploads/2016/11/cours-maths-terminale.png
Mathovore

GRATUIT
VOIR