Cours maths 3ème

Calcul littéral et les identités remarquables : cours de maths en 3ème


Mise à jour le 16 avril 2018  |   Signalez une ERREUR  | 

cours de maths en 3ème https://www.mathovore.fr/wp-content/uploads/2016/11/cours-maths-3eme.png https://www.mathovore.fr/wp-content/uploads/2016/11/cours-maths-3eme-150x150.png0 https://www.mathovore.fr/le-calcul-litteral-et-les-identites-remarquables-cours-maths-25#respond
662
Le calcul littéral et les 3 identités remarquables du collège dans un cours de maths en 3ème où nous étudierons la factorisation d’expressions littérales et le développement d’expressions algébriques. Dans cette leçon en troisième, nous aborderons également, les programmes de calcul.

I. Développer et réduire une expression.

0. Préambule: règle des signes.

Afin de pouvoir être à l’aise avec le calcul littéral (ou algébrique), il faut impérativement maîtriser la règle des signes.

 

Multiplié par+
++
+
Définition :

Développer une expression c’est l’écrire sous la forme d’une somme de termes la plus simple possible.

(on développe les produits, on supprime les parenthèses et on regroupe les termes de même nature)

1. Distributivité de la multiplication sur l’addition et la soustraction : (rappels de 5ème et 4ème )

Propriétés :

Soient a, b, c, d et k des nombres (réels IR) quelconques.

 k\times  (a+b)=k\times   a + k\times   b ( simple distributivité)

k\times  (a-b)=k\times   a - k\times   b (simple distributivité)

 (a+b)\times  (c+d)=a\times   c + a\times   d + b\times   c + b\times   d(double distributivité).

Exemples :

 A=5(x+3)

A=5\times   x+5\times   3

 A=5x+15

 B=7(2x-3y)

 B=7\times   2x-7\times   3y

B=14x-21y

 C=(3x+2)(5x+6)

 C=3x\times   5x+3x\times   6 +2\times   5x+2\times   6

 C=\15x^2+18x+10x+12

 C=\15x^2+28x+12

 D=(2x-1)(5x-6)

 D=2x\times   5x-2x\times  6-1\times   5x + 1 \times   6

 D=10x^2-12x-5x +6

 D=10x^2-17x +6
 E=4(x+7)-(2x+4)(3x-1)

 E=4\times   x+4\times   7-[2x\times   3x-2x\times   1 + 4\times   3x -4\times   1]

Lorsque le développement est précédé d’un signe moins,

on ouvre une parenthèse et on effectue le développement à l’intérieur.

 E=4x+28-[6x^2-2x + 12x -4]

 E=4x+28-6x^2+2x -12x +4

 E=-6x^2-6x +32

2. Les identités remarquables.

Propriétés :

Soient a et b sont deux nombres (réels IR) quelconques.

A. Carré d’une somme

(a + b)² = a² + 2ab + b²

B. Carré d’une différence

(a – b)² = a² – 2ab + b²

C. Produit d’une somme de deux nombres par leur différence

(a + b) (a – b) = a² – b²

Preuves :

Utilisons la propriété de double distributivité rappelée au début de la leçon.

A.

(a+b)²

= (a+b)(a+b)

= axa+axb+bxa+bxb

= a²+ab+ba+b²       (or ab = ba car la multiplication est

commutative en effet 2×3=3×2)

donc

(a+b)²= a²+2ab+b²

cqfd

B.

(a-b)²

= (a-b)(a-b)

= axa-axb-bxa+bxb

= a²-ab-ba+b²       (ne pas oublier la règle des signes.)

donc (a-b)²= a²-2ab+b²

cqfd

C.

(a-b)(a+b)

= axa+axb-bxa-bxb

= a²+ab-ab-b²

= a²-b²                                cqfd

Exemples :

 A=(x+9)^2

 A=x^2+2\times   x\times  9+9^2

 A=x^2+18\times   x+81

 B=(x-7)^2

 B=x^2-2\time x\times   7 +7^2

 B=x^2-14\time x+49

 C=(x-4)(x+4)

 C=x^2-4^2

 C=x^2-16

 D=(2x-3)^2

 D=(2x)^2-2\times  2x\times   3+3^2

 D=2x\times   2x-12x+9

 D=4x^2-12x+9

 E=(4x-5)^2

 E=(4x)^2-2\times   4x \times   5 + 5^2

 E=16x^2-40\times   x + 25

 F=(2x-9)(2x+9)

 F=(2x)^2-9^2

 F=4x^2-81

 G=2x-(x-4)^2

Lorsque le développement est précédé d’un signe moins,on ouvre une parenthèse et on effectue le développement à l’intérieur.

 G=2x-(x^2-8x+16)

On supprime ensuite les parenthèses.

 G=2x-x^2+8x-16

 G=-x^2+10x-16

II. Factoriser une somme de termes

Définition :

Factoriser une somme de termes, c’est la transformer en un produit de facteurs.

Méthode 1 :

On recherche un facteur commun aux différents termes de la somme.

 A=4x+12 (4 est un facteur commun à 4x et à 12)

 A=4\times   x + 4\times   3

On fait apparaître le facteur commun et on l’entoure en rouge dans chaque terme.

 A=4(x+3)

On applique la règle de la distributivité (dans le sens de la factorisation)

 B=5a^2-25a

 B=5a\times   a- 5a \times   5

 B=5a(a-5)

 C = (2x + 1)(7x - 3) + (2x+ 1)( x + 2)

 C = (2x + 1)[(7x - 3) + ( x + 2)]

 C = (2x + 1)(7x - 3 + x + 2)

 C = (2x + 1)(8x - 1)

 D = (5x - 1)(3x - 7) - (5x - 1)(5x - 3)

 D = (5x - 1)[(3x - 7) - (5x - 3)]

 D = (5x - 1) (3x - 7 - 5x + 3)

 D = (5x - 1) (-2x-4)

Méthode 2 :

on reconnaît une identité remarquable.

 E = x^2 + 10x + 25

Cette expression ressemble à a² + 2ab + b² qui vaut (a + b)² .

a vaudrait  x et b vaudrait 5.

vérifions si  10x est le double produit 2ab.

 E =x^2 + 2 \times   x \times   5 + 5^2

 10x est bien le double produit donc :

 E=(x+5)^2
 F=9x^2-24x+16

Cette expression ressemble à a² – 2ab + b² qui vaut (a – b)²

 F=(3x)^2-2\times   3x \times   4+4^2

a vaut  3x et b vaudrait 4 donc :

 F=(3x-4)^2

 G=9x^2 - 16

Cette expression ressemble à a² – b² qui vaut (a + b) (a – b)

 G=(3x)^2 - 4^2

a vaut  3x et b vaut 4 donc :

 G=(3x-4)(3x+4)

III. Résolution d’une équation produit du type (ax + b) (cx +d) = 0 (avec a et c non nuls).

1. Produit nul:

Théorème :

Si A = 0 ou B = 0 alors A x B = 0 .

Si A x B = 0 alors A = 0 ou B = 0 (c’est la réciproque) .

Autrement dit :
Dire qu’un produit de facteurs est nul revient à dire que l’un au moins de ses facteurs est nul.

2. Exemple :

Résoudre l’équation (4x + 8) (9x – 63) = 0

Résoudre cette équation, c’est trouver toutes les valeurs de x qui vérifient l’égalité donnée.

Ici on veut qu’un produit de deux facteurs soit égal à zéro.

Dire qu’un produit de facteurs est nul revient à dire que l’un au moins de ses facteurs est nul .

On a donc

4x + 8 = 0 ou      9x – 63 = 0

4x = -8 ou      9x = 63

x = – 2 ou      x = 7

Conclusion :

Les solutions de cette équation sont – 2 et 7.

Ainsi

S ={ – 2 ; 7 }
Calcul littéral et les identités remarquables : cours de maths en 3ème
4.7 (93.33%) 3 votes



Les derniers topics du forum

Retrouvez les derniers topics ajoutés et des demandes d'aide formulées par les élèves. Une communauté dynamique d'aide en ligne qui vous permettra de résoudre vos exercices, DM ou de résoudre un problème dont vous n'arrivez pas à trouver la solution.


D'autres documents similaires

Inscription gratuite à Mathovore. Rejoignez les 129049 Mathovoristes, inscription gratuite.

https://www.mathovore.fr/wp-content/uploads/2016/11/cours-maths-3eme.png
Mathovore

GRATUIT
VOIR