exercices maths 1ère

Fonctions et variations : exercices de maths en 1ère corrigés en PDF.


 Les fonctions numériques et le sens de variation à travers des exercices de maths en 1ère corrigés. Calculer l’image ou l’antécédent et créer le tableau de variation. Étudier la dérivée à l’aide d’un tableau de signe puis le tableau de variation de la fonction. Déterminer des limites aux extrémités du domaine de définition et rechercher d’éventuelles asymptotes à la courbe en première.

Exercice 1 – Sens de variation d’une fonction composée

Donner une décomposition de la fonction f définie par f(x) = (x-3)^2 +2  qui permette d’en déduire son sens de variation sur l’intervalle I =] - \infty ; 3].

Exercice 2 – Sens de variation

On considère la fonction f définie par f(x)=x(1-x)\,sur\,\mathbb{R}.

1. Démontrer que f(x)\leq\, \frac{1}{4}\,,\gamma x\in\mathbb{R}.

2. En déduire que la fonction f admet un maximum en x=\frac{1}{2}.

3. Démontrer que f(x)=\frac{1}{4}-(x-\frac{1}{2})^2 .

4. En déduire que f est croissante sur l’intervalle ]-\infty;\frac{1}{2}[ et décroissante sur ]\frac{1}{2};+\infty[ .

Exercice 3 – Comparer deux fonctions

Le but de cet exercice est de comparer les deux fonctions f et g définies sur \mathbb{R} par :

f(x)=\frac{1}{1+x^4}\,et\,g(x)=\frac{1}{1+x^2}

1. Calculer f(x)-g(x) .

2.  En déduire l’intervalle sur lequel on a f\geq\, g.

Exercice 4 – Comparaison de fonctions

Le but de cet exercice est de comparer les deux fonctions f et g définies par :

f(x)=\sqrt{1+x} et g(x)=1+\frac{x}{2} sur l’intervalle [-1;+\infty[ » alt= »[-1;+\infty[ » align= »absmiddle » />.

1. Montrer que f(x)\geq\,,0  et  g(x)\geq\,,0  pour tout x appartenant à [-1;+\infty[.

2. Calculer ,(f(x),,)^2 et ,(g(x),,)^2.

3. Démontrer que ,(f(x),,)^2\leq\,,,(g(x),,)^2 pour tout x appartenant à [-1;+\infty[.

4. En déduire une comparaison de f et g sur l’intervalle [-1;+\infty[.

5. Tracer sur un même repère les représentations graphiques de f et g sur l’intervalle [-1;+\infty[.

Exercice 5 – Fonction composée

On considère la fonction f définie par f(x) = x^2 - 1 sur \mathbb{R}.

Donner une formule explicite de la fonction fog lorsque :

1.  g(x)=\sqrt{x-1}\,sur\,[1;+\infty[.

2.  g(x)=1-\frac{1}{x}\,sur\,\mathbb{R}^*.

Exercice 6 – Parité

Etudier la parité de chacune des fonctions suivantes :
f(x)=x+\frac{1}{x}\,sur\,\mathbb{R}^*\\g(x)=x^2+\frac{1}{x}\,sur\,\mathbb{R}^*\\h(x)=x+\frac{1}{x^2}\,sur\,\mathbb{R}^*\\k(x)=x^2+\frac{1}{x^2}\,sur\,\mathbb{R}^*

Exercice 7 – Etude de fonction numérique

Soit la fonction  f définie sur  \mathbb{R} par  f(x)=x^2+6x+5

1. Etudier les variations de  f sur  \mathbb{R} .

2. Déterminer les coordonnées des points d’intersection entre la courbe représentative de  f et la droite  D d’équation  y=\frac{1}{2}x-2.

Exercice 8

Etudier les variations sur  \mathbb{R} de la fonction f définie par  f(x)=3x-4x^3 .

Exercice 9

Soit f la fonction définie sur  \mathbb{R} par :

 f(x)=\frac{-4x-4}{x^2+2x+5}.

1. Etudier les variations de f sur  \mathbb{R} .

2. Déterminer les coordonnées du point A, intersection entre la courbe représentative de f et l’axe des abscisses .

3. Déterminer une équation de la tangente T à la courbe représentative de  f au point A.

Exercice 10

Etudier les variations sur ]-2 ; 1[ de la fonction  f définie par :

 f(x)=\frac{-5x^2+4x-8}{x^2+x-2} .

Exercice 11 – Forme canonique et factorisée

Déterminer la forme canonique et factorisée de :

f:x \mapsto  2x^2-2(\sqrt{3}-\sqrt{5})x-2\sqrt{15}

Exercice 12 – Etude de fonctions du second degré

On note f et  g  deux fonctions polynômes du second degré, définies par :

f:x,\mapsto  ,2x^2,+2x-4 et g:x,\mapsto  ,-(x+3)(x+2)

On note C_f et C_g leur représentation graphique respectives dans un repère orthogonal (O,\vec{i},\vec{j}).

1. Déterminer le domaine de définition de f puis celui de g.

2. Déterminer la forme canonique puis factorisée de f(x).

3. Déterminer la forme développée puis canonique de g(x).

4. Déterminer les coordonées des points d’intersection entre C_f et les axes du repère.

5. Déterminer les coordonées des points d’intersection entre C_g et les axes du repère.

6. Dresser le tableau de variation de f puis celui de g.

7. Décrire C_f  puis  C_g.

8. Déterminer les coordonnées des points d’intersection entre C_f et C_g.

9. Etudier la position relative entre les deux courbes C_f et C_g.

Exercice 13 – Etude d’une fonction inverse et de l’hyperbole

f est la fonction x \mapsto   \frac{2}{x} définie sur \mathbb{R}^*.

g est la fonction x \mapsto   -x+3 définie sur \mathbb{R}.

Dans un repère orthonormal (O,i,j), C et D sont les courbes représentant f et g.

1.  Tracer les courbes C et D.

2.  Démontrer que le point d’abscisse 1 de D appartient à C.

Trouver le second point d’intersection de ces courbes.

indication : Vérifier que x² – 3x + 2 = (x – 1)(x – 2)

3.  Vérifier les coordonnées de ces points d’intersection sur le graphique.

4.  Construire l’ensemble des points M(x; y) tels que x² y² = 4.

5.  Un rectangle a pour aire 2 m² et pour périmètre 6m.

En utilisant le graphique précédent, trouver sa longueur et sa largeur.

Exercice 14 – Etude d’une fonction

On considère la fonction f définie par :

f(x)=\frac{(1-x^2)^2}{1+x^2}

1. Déterminer son ensemble de définition.

2. Démontrer que f est une fonction positive sur \mathbb{R}.

3. Etudier la parité de la fonction f.

4. Tracer soigneusement la représentation graphique Cf de la fonction f.

On se limitera à l’intervalle [- 3 ; 3 ].

5. Donner, par lecture graphique, la valeur du maximum de la fonction f sur :

a. l’intervalle [-1;1].

b. l’intervalle [-2;1].

6. Résoudre l’inéquation f(x)\leq\,,1.

Exercice 15 – Comparaison de fonctions
Le but de cet exercice est de comparer les fonctions f et g définies par :

f(x)=\sqrt{1+x}  et  g(x)=1+\frac{x}{2}  sur l’intervalle [-1;+\infty[.

1. Montrer que f(x)\geq\,,0 et g(x)\geq\,,0 pour tout x\in[-1;+\infty[.

2. Calculer (f(x))^2 et (g(x))^2.

3. démontrer que  (f(x))^2,\leq\,,(g(x))^2 pour tout   x\in[-1;+\infty[.

4. En déduire une comparaison de f et g sur l’intervalle  [-1;+\infty[.

5. Tracer sur un même repère les représentation graphique de f et g sur l’intervalle  [-1;+\infty[.

Exercice 16 – Parité

Etudier la parité des fonctions suivantes :

f(x)=x+\frac{1}{x}  sur \mathbb{R}^*

g(x)=x+\frac{1}{x^2} sur \mathbb{R}^*

Exercice 17 – Composée

On considère la fonction f définie par f(x)=x^2-1 sur  \mathbb{R} .

Donner une formule explicite de la fonction fog lorsque :

g(x)=\sqrt{1-x} sur ]-\infty;1]   puis g(x)=1-\frac{1}{x}  sur \mathbb{R}^*.

Exercice 18 – Composée de fonctions de référence

Soit la fonction f définie par f(x)=\sqrt{4x-1} sur I=[\frac{1}{4};+\infty[.

En considérant la fonction f comme la composée de fonctions de référence, préciser le sens de variations de f sur l’intervalle I.

Exercice 19 – Sens de variation d’une fonction composée

On donne f(x)=-3x+1  et g(x)=\frac{1}{x} .

On définit la fonction h définie sur I=]-\infty;\frac{1}{3}[ par h=gof..

1. Donner l’expression de h(x) .

2. Déterminer le sens de variation de h sur I .

Exercice 20 – Ensemble de définition d’une fonction composée

On considère les fonctions f et g définies par :

f(x)=x^2-1\,et\,g(x)=\frac{x+1}{x}.

1. Calculer gof(x) .

2. Quel est l’ensemble de définition de gof ?

Exercice 21 – Fonction majorée

Soit la fonctionf définie par f(x)=\frac{2x^2}{x^2+3} .
1. Déterminer les réels a et b tels que f(x)=a+\frac{b}{x^2+3} .

2.  Montrer que f est majorée par 2.

Exercice 22 – Forme canonique

On considère la fonction f définie sur \mathbb{R} par :

f(x)=3x^2-12x+21

1. Déterminer la forme canonique de f.

2. Décrire la courbe de f .

Exercice 23 – Tracer la courbe de la somme de deux fonctions

u et v sont représentées ci-dessous.

Tracer sur ce graphique la courbe représentative de la fonction u + v.

Exercice 24 – Exploitation d’un tableau de variation

Voici le tableau de variations d’une fonction f définie sur \mathbb{R} :

On donne f( – 2) = – 1 et f(2) = 0.
On définit les fonctions suivantes :

h:x \mapsto   f(x)+2;r:x \mapsto   f(x+2);p:x \mapsto   f(2x);g:x \mapsto   2f(x)

1.  Donner les valeurs de g (1), h (2), p (1) et r ( – 1).

2.  Etablir les tableaux de variations de h, r, p et g.

Exercice 25 – Fonction rationnelle

Soit la fonction f définie par :

f(x)=\frac{2x+3}{3x+2}

1.  Etudier les limites de f. Interpréter graphiquement.

2. Etudier les variations de f. Donner le tableau de variations complet.

3.  Déterminer les éventuelles intersections de (Cf ) avec l’axe des abscisses.

Exercice 26 – Fonctions composées commutatives

Soient f et g les fonctions définies sur \mathbb{R} par :

f(x)=2x^2-1 et g(x)=4x^3-3x.

Démontrer que fog=gof.

Exercice 27 – Comparaison de racines

Soient a,b dans \mathbb{R}.

1. Développer (\sqrt{a}+\sqrt{b})^2.

2. Démontrer que \sqrt{a}-\sqrt{b}\geq\, \sqrt{a+b}.

4/5 - (40 votes)
1 Comment
(Laisser un commentaire)

Votre email ne sera pas publié.


*


Télécharger et imprimer ce document en PDF gratuitement :

Vous avez la possibilité de télécharger puis d'imprimer gratuitement ce document «fonctions et variations : exercices de maths en 1ère corrigés en PDF.» au format PDF.


D'autres fiches similaires :

Inscription gratuite à Mathovore.  Mathovore c'est 13 908 512 cours et exercices de maths téléchargés en PDF.