Exercices maths terminale S et ES

Exercices sur les limites, les asymptotes et la tangente à une courbe en terminale S


Mise à jour le 2 mai 2018  |   Signalez une ERREUR  | 

exercices de maths en terminale S https://www.mathovore.fr/wp-content/uploads/2016/11/exercices-maths-terminale.png https://www.mathovore.fr/wp-content/uploads/2016/11/exercices-maths-terminale-150x150.png0 https://www.mathovore.fr/exercices-sur-la-derivation-et-les-integrales-en-terminale-s-serie-5#respond
378

La série 5 des exercices sur la dérivation et les intégrales en terminale S afin de consolider vos connaissances et de progresser avec Mathovore.

Dérivée et dérivation
Exercice n° 1 :

Pour chacunes des fonctions f suivantes :
• Indiquer l’ensemble de dérivabilité de la fonction .
• ,Calculer sa dérivée .

a.  f(x)=(x^2-5)^4 .

b.  f(x)=\sqrt{x^2+5x-6} .

c.  f(x)=\frac{1}{\sqrt{1+x^2}} .

d.  f(x)=(3x+6)^{-2} .

e.  f(x)=\sqrt{3+cos^2 x} .

f.  f(x)=sin(3x).cos(2x) .

g.  f(x)=\frac{sin(3x)}{x} .

h.  f(x)=\frac{x+3}{x^2-4} .

Exercice n° 2 :

pour tout entier naturel n, on considere la fonction  f_n definie sur  ]-1;+\infty[ par :

• pour n=0,  f_0(x)=\frac{1}{\sqrt{1+x^3}

• pour  n\ge 1\,,\,f_n(x)=\frac{x^{3n}}{\sqrt{1+x^3}

On Désignera par (Cn) la courbe représentative de  f_n dans un repère orthonormal  (O,\vec{i},\vec{j}) ayant comme unité graphique 4 cm.

1. Déterminer les limites de  f_0 aux bornes de son ensemble de définition.
Etudier le sens de variation de  f_0 et construire  C_0 dans le repère  (O,\vec{i},\vec{j}) .

2. Soit n un entier naturel non nul.
a.  f'_n désignantla fonction dérivée de  f_n , montrer que :

 f'_n=\frac{x^{3n-1}[(6n-3)x^3+6n]}{2(1+x^3)(\sqrt{1+x^3})}

b. Etudier le sens de variation des fonctions  f_1 et  f_2 puis dresser leur tableau de variation .

c. Tracer  C_1 et  C_2 dans le repere  (O,\vec{i},\vec{j}).

Corrigé de cet exercice

Limite et dérivée
Exercice n° 1 :

Calculer les limites suivantes, dont on admettra l’existence.

a.  \lim_{x\to +\infty} (3x^2+4x-5) .

b.  \lim_{x\to +\infty} (2+\frac{3}{x}-\frac{1}{x^2}) .

c.  \lim_{x\to +\infty} (\frac{6x-1}{2x+5}) .

d.  \lim_{x\to +\infty} (\sqrt{x+2}+\sqrt{x-3}) .

e.  \lim_{x\to \pi} (\frac{sinx}{x}) .

f.  \lim_{x\to -3} (\frac{1-\sqrt{x+4}}{x+3}) .

Exercice n° 2 : asymptotes

Pour chacunes des fonctions f suivantes :
• Déterminer son ensemble de définition.
• Calculer les limites aux bornes de son domaine de définition.
• En déduire l’existence d’asymptote à la courbes représentative de la fonction f et indiquer leur équation .

a.  f(x)=\frac{2x-4}{x-3} .

b.  f(x)=\frac{4x^2-2x-1}{x^2-x-12} .

Corrigé de cet exercice

Exercices sur l’étude de fonction extrait de sujet du baccalauréat

On considere l’application f de  \mathbb{R} dans  \mathbb{R} definie par :

si  x\in [0;2[\,,\, f(x)=x^2(2-x) ;

et pour tout  x de  \mathbb{R}\,,\,f(x+2)=f(x) .

1. Etudier la restriction  f_0 de f à l’intervalle [0;2] et construire la courbe représentative de  f_0 .

Comment peut-on en déduire la courbe représentative de la restriction de f à l’intervalle [2n;2n+2] où n est élément de  \mathbb{Z} .

2. Démontrer que :

Si  x\in [2n;2n+2]\,,\, f(x)=(x-2n)^2(2n+2-x).

3. Est-ce que f est continue sur  \mathbb{R} ?

4. Est-ce que f est dérivable sur  \mathbb{R} ?

Corrigé de cet exercice

Fonction et dérivée

On considère la fonction f définie sur \mathbb{R} par f(x)=e^{-2e^{-3x}}.

1.Calculer f(0).

2.Etudier les limites de f en -\infty et en +\infty.

3.calculer la dérivée f’.En déduire le tableau de variations de f.

4.Déterminer une équation de la tangente T à la courbe Cf au point d’abscisse x_0=\frac{1}{3}ln2.

Corrigé de cet exercice

Exercices sur les limites, les asymptotes et la tangente à une courbe en terminale S
Voter pour cette fiche



Les derniers topics du forum

Retrouvez les derniers topics ajoutés et des demandes d'aide formulées par les élèves. Une communauté dynamique d'aide en ligne qui vous permettra de résoudre vos exercices, DM ou de résoudre un problème dont vous n'arrivez pas à trouver la solution.


D'autres documents similaires

Inscription gratuite à Mathovore. Rejoignez les 130149 Mathovoristes, inscription gratuite.

https://www.mathovore.fr/wp-content/uploads/2016/11/exercices-maths-terminale.png
Mathovore

GRATUIT
VOIR