Chapitre 17

Matrices

17.1 Définition d'une matrice

Définition 17.1 :

Soit un corps commutatif \mathbb{K} et deux entiers $n,p \geq 1$. On appelle matrice $n \times p$ à coefficients dans \mathbb{K} , une application

$$A: \left\{ \begin{array}{ccc} \llbracket 1,n \rrbracket \times \llbracket 1,p \rrbracket & \longrightarrow & \mathbb{K} \\ (i,j) & \mapsto & a_{ij} \end{array} \right.$$

que l'on note:

$$A = ((a_{ij})) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & & & \vdots \\ a_{n1} & \dots & \dots & a_{np} \end{pmatrix}$$

le coefficient a_{ij} se trouve à l'intersection de la ième ligne et de la jième colonne. On note $\mathfrak{M}_{n,p}(\mathbb{K})$ l'ensemble des matrices $n \times p$ à coefficients dans le corps \mathbb{K} .

Remarque 194. Pour un indice de ligne $i \in [1,n]$, on note $L_i = (a_{i1}, \ldots, a_{ip}) \in \mathbb{K}^p$ le i^e vecteur ligne de A. Pour un indice de colonne $j \in [1,p]$, on note $C_j = (a_{1j}, \ldots, a_{nj}) \in \mathbb{K}^n$ le j^e vecteur colonne de A.

On définit les opérations suivantes sur $\mathfrak{M}_{n,p}(\mathbb{K})$ (ce sont les opérations usuelles sur les applications). Pour deux matrices $A,B \in \mathfrak{M}_{n,p}(\mathbb{K})$,

- $-A = B \text{ ssi } \forall (i,j) \in [1,n] \times [1,p], a_{ij} = b_{ij}.$
- $-A + B = ((c_{ij})) \in \mathfrak{M}_{n,p}(\mathbb{K}) \text{ avec } \forall (i,j) \in [[1,n]] \times [[1,p]], c_{ij} = a_{ij} + b_{ij}.$
- Si $\lambda \in \mathbb{K}$, $\lambda A = ((d_{ij})) \in \mathfrak{M}_{n,p}(\mathbb{K})$ avec $\forall (i,j) \in [1,n] \times [1,p]$, $d_{ij} = \lambda a_{ij}$.
- La matrice nulle est définie par $0_{\mathfrak{M}_{n,n}(\mathbb{K})} = ((f_{ij}))$ où $\forall (i,j) \in [1,n] \times [1,p], f_{ij} = 0_{\mathbb{K}}$.

Définition 17.2 : Matrices de la base canonique

Pour deux indices $k \in [1,n]$ et $l \in [1,p]$, on définit la matrice élémentaire $E_{kl} \in \mathfrak{M}_{n,p}(\mathbb{K})$ par:

$$E_{kl} = ((\delta_{ik}\delta_{jl})) = \begin{pmatrix} 0 & \dots & 0 & \dots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & 1 & \dots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & 0 & \dots & 0 \end{pmatrix}$$

Tous les coefficients de la matrice E_{kl} sont nuls sauf celui qui se trouve à l'intersection de la ligne k et de la colonne l qui vaut 1.

Théorème 17.1 : L'ensemble des matrices est un ev

Muni des lois précédemment définies, l'ensemble $(\mathfrak{M}_{n,p}(\mathbb{K}),+,.)$ est un \mathbb{K} -ev de dimension $n \times p$. Le système formé des $n \times p$ matrices E_{kl} est une base de cet ev, appelée base canonique de $\mathfrak{M}_{n,p}(\mathbb{K})$.

Définition 17.3 : Transposée

Soit une matrice $A = ((a_{ij})) \in \mathfrak{M}_{n,p}(\mathbb{K})$ de taille $n \times p$. On appelle $transpos\acute{e}e$ de la matrice A, la matrice $A \in \mathfrak{M}_{p,n}(\mathbb{K})$ définie par :

$${}^tA = ((\widetilde{a}_{i,j}))$$
 où $\forall (i,j) \in [1,p] \times [1,n], \ \widetilde{a}_{ij} = a_{ji}$

L'application

$$T: \left\{ \begin{array}{ccc} \mathfrak{M}_{n,p}(\mathbb{K}) & \longrightarrow & \mathfrak{M}_{p,n}(\mathbb{K}) \\ A & \mapsto & {}^tA \end{array} \right.$$

est un isomorphisme d'espaces vectoriels.

17.2 Matrice d'une application linéaire relativement à deux bases

DÉFINITION 17.4 : Matrice d'un vecteur dans une base

Soit un \mathbb{K} -ev (E,n,\mathbb{K}) de dimension finie n et une base $e=(e_1,\ldots,e_n)$ de E.

Soit $x \in E$ un vecteur qui se décompose sur la base e en :

$$x = x_1 e_1 + \dots + x_n e_n$$

On appelle matrice de x dans la base e, la matrice $n \times 1$

$$Mat_e(x) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathfrak{M}_{n,1}(\mathbb{K})$$

DÉFINITION 17.5 : Matrice d'un système de vecteurs dans une base

Avec les notations précédentes, soit $S = (x_1, \ldots, x_p)$ un système de p vecteurs de E, qui se décomposent dans la base e sous la forme

$$x_j = \sum_{i=1}^n x_{ij} e_i$$

On appelle matrice du système S dans la base e, la matrice $n \times p$ définie par :

$$Mat_e(S) = \begin{pmatrix} x_{11} & \dots & x_{1p} \\ \vdots & & \vdots \\ x_{n1} & \dots & x_{np} \end{pmatrix} \in \mathfrak{M}_{n,p}(\mathbb{K})$$

DÉFINITION 17.6 : Matrice d'une application linéaire dans deux bases

Soient (E,p,\mathbb{K}) et (F,n,\mathbb{K}) deux espaces vectoriels de dimension p,n sur le même corps \mathbb{K} . Soit $e=(e_1,\ldots,e_p)$ une base de E et $f=(f_1,\ldots,f_n)$ une base de F. Soit $u\in L(E,F)$ une application linéaire. On appelle matrice de u relativement aux bases e et f, la matrice

$$Mat_{e,f}(u) = \begin{pmatrix} a_{11} & \dots & a_{1p} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{np} \end{pmatrix} \in \mathfrak{M}_{n,p}(\mathbb{K})$$

οù

$$\forall j \in [1,n], \ u(e_j) = \sum_{i=1}^{n} a_{ij} f_i$$

En d'autres termes, c'est la matrice du système $(u(e_1), \ldots, u(e_p))$ dans la base f.

Théorème 17.2 : Une application linéaire est entièrement déterminée par sa matrice dans deux bases

Soit un espace vectoriel (E,p,\mathbb{K}) de dimension p, et $e=(e_1,\ldots,e_p)$ une base de E. Soit un espace vectoriel (F,n,\mathbb{K}) de dimension p et p une base de p. Alors, l'application :

$$\phi_{e,f}: \left\{ \begin{array}{ccc} L(E,F) & \longrightarrow & \mathfrak{M}_{n,p}(\mathbb{K}) \\ u & \mapsto & Mat_{e,f}(u) \end{array} \right.$$

est un isomorphisme d'espaces vectoriels.

Remarque 195. On en déduit donc le résultat précédemment admis :

$$\dim L(E,F) = \dim E \times \dim F$$

DÉFINITION 17.7: Matrice d'une forme linéaire dans une base

Soit (E, n, \mathbb{K}) un espace de dimension n, et $e = (e_1, \dots, e_n)$ une base de E. Soit $\phi \in E^*$ une forme linéaire. La matrice de ϕ dans la base e est de taille $1 \times n$:

$$Mat_e(\phi) = (\phi(e_1), \dots, \phi(e_n)) \in \mathfrak{M}_{1,n}(\mathbb{K})$$

17.3 Produit matriciel

DÉFINITION 17.8: Produit de matrices

Soit deux matrices $A = ((a_{ij})) \in \mathfrak{M}_{n,q}(\mathbb{K})$ et $B = ((b_{ij})) \in \mathfrak{M}_{q,p}(\mathbb{K})$. On définit la matrice produit $AB = ((c_{ij})) \in \mathfrak{M}_{n,p}(\mathbb{K})$ par :

$$\forall (i,j) \in [1,n] \times [1,p]$$
 $c_{ij} = \sum_{k=1}^{q} a_{ik} b_{kj}$

Théorème 17.3 : Matrice d'une composée d'applications linéaires

On considère trois K-ev et deux applications linéaires:

$$(E,p,\mathbb{K}) \xrightarrow{u} (F,q,\mathbb{K}) \xrightarrow{v} (G,n,\mathbb{K})$$

Si e,f,g sont des bases de E,F,G, alors

$$Mat_{e,g}(v \circ u) = Mat_{f,g}(v)Mat_{e,f}(u)$$

Théorème 17.4 : Propriétés de la multiplication

Soient $A \in \mathfrak{M}_{n,p}(\mathbb{K}), B \in \mathfrak{M}_{p,q}(\mathbb{K})$ et $C \in \mathfrak{M}_{q,r}(\mathbb{K})$.

- Associativité: $A \times (B \times C) = (A \times B) \times C$
- $\forall \lambda \in \mathbb{K}, \ \lambda \cdot (A \times B) = (\lambda \cdot A) \times B = A \times (\lambda \cdot B)$

Si $A \in \mathfrak{M}_{n,p}(\mathbb{K})$ et $B,C \in \mathfrak{M}_{p,q}(\mathbb{K})$, on a

- **Distributivité:** $A \times (B+C) = A \times B + A \times C$

Théorème 17.5 : Produit et transposée

Soit $A \in \mathfrak{M}_{n,p}(\mathbb{K})$ et $B \in \mathfrak{M}_{p,q}(\mathbb{K})$. Alors

$$t(AB) = {}^{t}B^{t}A$$

Théorème 17.6 : Écriture matricielle d'une application linéaire

Soit une application linéaire $(E,p,\mathbb{K}) \xrightarrow{u} (F,n,\mathbb{K})$, une base e de l'espace E et une base f de l'espace F. Soit un vecteur $x \in E$, et $X = Mat_e(x)$ sa matrice dans la base e. Notons $y = u(x) \in F$ et $Y = Mat_f(y)$ sa matrice dans la base f. Alors si $A = Mat_{e,f}(u)$ est la matrice de l'application linéaire u dans les deux bases e et f, on a l'égalité:

$$Y = AX$$

Théorème 17.7:

Soient deux matrices $A,B \in \mathfrak{M}_{n,p}(\mathbb{K})$. Si

$$\forall X \in \mathfrak{M}_{n,1}(\mathbb{K}), \quad AX = BX$$

alors A = B.

Exercice 17-1

Soit deux applications linéaires

$$u: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^2 \\ (x,y,z) & \mapsto & (x-y,\, x+y+z) \end{array} \right. \quad v: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^3 \\ (x,y) & \mapsto & (x+y,\, x+2y,\, x-y) \end{array} \right.$$

On note e la base canonique de \mathbb{R}^3 et f la base canonique de \mathbb{R}^2 .

- a) Ecrire $Mat_{e,f}(u)$ et $Mat_{f,e}(v)$
- b) Ecrire $Mat_{e,e}(v \circ u)$ et $Mat_{f,f}(u \circ v)$
- c) Donner l'expression analytique de $u \circ v$ et $v \circ u$.

Exercice 17-2

Soit (E, n, \mathbb{K}) un espace de dimension n et $u \in L(E)$ un endomorphisme. On suppose que $\forall \phi \in E^*$, $\phi \circ u = 0_{E^*}$. Montrer que $u = 0_{L(E)}$.

17.4 L'algèbre des matrices carrées.

Définition 17.9 : Matrice carrée

On appelle matrice carrée d'ordre n à coefficients dans le corps \mathbb{K} , une matrice $n \times n$. On note $\mathfrak{M}_n(\mathbb{K})$ l'ensemble des matrices carrées.

DÉFINITION 17.10: Matrice d'un endomorphisme dans une base

Soit un \mathbb{K} -ev (E,n,\mathbb{K}) et un endomorphisme $u\in L(E)$. Soit une base $e=(e_1,\ldots,e_n)$ de E. On appelle matrice de l'endomorphisme u dans la base e, la matrice de l'application linéaire u relativement aux bases e et e:

$$Mat_e(u) = Mat_{e,e}(u)$$

DÉFINITION 17.11: Matrice identité

On appelle $I_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix} \in \mathfrak{M}_n(\mathbb{K})$ la matrice identité de $\mathfrak{M}_n(\mathbb{K})$. C'est la matrice de

l'endomorphisme id_E dans n'importe quelle base de E.

Théorème 17.8 : L'algèbre $\mathfrak{M}_n(\mathbb{K})$

Muni des lois définies précédemment, l'ensemble des matrices carrées $(\mathfrak{M}_n(\mathbb{K}), +,.,\times)$ est une \mathbb{K} -algèbre de dimension n^2 et d'élément neutre I_n pour la multiplication.

Si e est une base de (E, n, \mathbb{K}) , l'application

$$\phi: \left\{ \begin{array}{ccc} \left(L(E), +, \cdot, \circ\right) & \longrightarrow & \left(\mathfrak{M}_n(\mathbb{K}), +, \cdot, \times\right) \\ u & \mapsto & Mat_e(u) \end{array} \right.$$

est un isomorphisme d'algèbres.

Théorème 17.9 : Produit de matrices canoniques

Pour deux matrices de la base canonique de $\mathfrak{M}_n(\mathbb{K})$, on a la formule importante suivante qui donne leur produit :

$$E_{kl}E_{pq} = \delta_{lp}E_{kq}$$

Exercice 17-3

Soit une matrice $A = ((a_{ij})) \in \mathfrak{M}_n(\mathbb{K})$ et deux indices $(k,l) \in [1,n]^2$.

- a) Déterminer les matrices AE_{kl} et $E_{kl}A$.
- b) Trouver toutes les matrices $A \in \mathfrak{M}_n(\mathbb{K})$ vérifiant: $\forall B \in \mathfrak{M}_n(\mathbb{K}), AB = BA$.

DÉFINITION 17.12 : Trace d'une matrice carrée

Soit une matrice $carr\acute{e}e\ A=((a_{ij}))\in\mathfrak{M}_n(\mathbb{K})$. On appelle trace de matrice A, le scalaire

$$Tr(A) = \sum_{i=1}^{n} a_{ii}$$

Théorème 17.10 : Propriétés de la trace

L'application

$$Tr: \left\{ \begin{array}{ccc} \mathfrak{M}_n(\mathbb{K}) & \longrightarrow & \mathbb{K} \\ A & \mapsto & \mathrm{Tr}(A) \end{array} \right.$$

est une forme linéaire sur $\mathfrak{M}_n(\mathbb{K})$ et

$$\forall (A,B) \in \mathfrak{M}_n(\mathbb{K})^2, \quad \boxed{\operatorname{Tr}(AB) = \operatorname{Tr}(BA)}$$

Exercice 17-4

Trouver toutes les formes linéaires ϕ sur $\mathfrak{M}_n(\mathbb{K})$ vérifiant

$$\forall (A,B) \in \mathfrak{M}_n(\mathbb{K})^2, \quad \phi(AB) = \phi(BA)$$

Calculs dans l'algèbre $\mathfrak{M}_n(\mathbb{K})$

1. l'anneau $\mathfrak{M}_n(\mathbb{K})$ n'est pas commutatif : en général

$$AB \neq BA$$

2. l'anneau $\mathfrak{M}_n(\mathbb{K})$ n'est pas intègre:

$$AB = 0 \Rightarrow A = 0$$
 ou $B = 0$

Puisque $(\mathfrak{M}_n(\mathbb{K}), +, \times)$ est un anneau, on a les formules suivantes: si $A, B \in \mathfrak{M}_n(\mathbb{K})$, si AB = BA, et $B \in \mathbb{N}$,

$$(A+B)^p = \sum_{k=0}^p \binom{p}{k} A^k B^{p-k}$$
 (binôme)

$$A^{p} - B^{p} = (A - B)(A^{p-1} + A^{p-2}B + \dots + AB^{p-2} + B^{p-1})$$

$$(I_n - A^p) = (I_n - A)(I_n + A + A^2 + \dots + A^{p-1})$$

Remarque 196. On utilise souvent la formule du binôme pour calculer les puissances d'une matrice. La dernière formule est intéressante lorsqu'une matrice est nilpotente: $A^p = 0$.

Exercice 17-5

Soit A une matrice carrée nilpotente. Montrer que la matrice (I - A) est inversible.

Exercice 17-6

Soit deux scalaires $(a,b) \in \mathbb{R}^2$ et la matrice A =. Déterminer la matrice A^n pour $n \in \mathbb{N}$.

■ Exercice 17-7

Soit la matrice $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. Calculer les matrices A^2, A^3 et en déduire l'expression de la matrice A^n pour tout entier $n \in \mathbb{N}$.

Exercice 17-8

Matrices de Jordan¹

Matrices de Jordan 1
$$a) \text{ Soit la matrice } J = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 1 & 0 & & \vdots \\ 0 & 1 & \ddots & & \\ & \ddots & \ddots & 0 & \vdots \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix}. \text{ Calculer les matrices } J^2 \text{ et } J^n \text{ pour tout entier } n \in \mathbb{N}.$$

b) Calculer les puissances de la matrice
$$A = \begin{pmatrix} a & 0 & \dots & 0 \\ b & a & & \vdots \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & b & a & 0 \\ 0 & \dots & 0 & b & a \end{pmatrix}$$

17.5 Matrices remarquables

17.5.1 Matrices scalaires

Ce sont des matrices de la forme

$$M = \lambda I_n = \begin{pmatrix} \lambda & 0 & \dots & 0 \\ 0 & \lambda & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda \end{pmatrix}, \quad \lambda \in \mathbb{K}$$

Théorème 17.11 : L'ensemble des matrices scalaires est une sous-algèbre de $\mathfrak{M}_n(\mathbb{K})$ isomorphe à l'algèbre ($\mathbb{K}, +, \times, \cdot$).

17.5.2 Matrices diagonales

Ce sont des matrices de la forme

$$D = \begin{pmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & d_n \end{pmatrix} = \text{Diag}(d_1, \dots, d_n), \quad (d_1, \dots, d_n) \in \mathbb{K}^n$$

Théorème 17.12 : L'ensemble des matrices diagonales est une sous-algèbre de l'algèbre des matrices carrées $\mathfrak{M}_n(\mathbb{K})$ de dimension n, isomorphe à l'algèbre \mathbb{K}^n .

Remarque 197. Le produit de deux matrices diagonales s'obtient en faisant le produit des éléments diagonaux :

$$\operatorname{Diag}(d_1,\ldots,d_n) \times \operatorname{Diag}(d'_1,\ldots,d'_n) = \operatorname{Diag}(d_1d'_1,\ldots,d_nd'_n)$$

^{1.} Camille Jordan, (05/01/1838- 22/01/1922), Français. Ses travaux portent sur la géométrie, (courbes de Jordan), mais également sur l'étude du groupe des permutations, et les séries de Fourier

17.5.3 Matrices triangulaires

Définition 17.13:

Soit une matrice $L=((l_{ij}))\in\mathfrak{M}_n(\mathbb{K})$. On dit que la matrice L est triangulaire inférieure si et seulement si :

$$\forall (i,j) \in [1,n]^2, \quad i < j \Rightarrow l_{ij} = 0$$

Ce sont les matrices de la forme:

$$L = \begin{pmatrix} l_{11} & 0 & \dots & 0 \\ & l_{22} & \ddots & \vdots \\ \vdots & & \ddots & 0 \\ l_{n1} & \dots & \dots & l_{nn} \end{pmatrix}$$

DÉFINITION 17.14 :

Soit une matrice $U = ((u_{ij})) \in \mathfrak{M}_n(\mathbb{K})$. On dit que cette matrice U est triangulaire supérieure ssi

$$\forall (i,j) \in [1,n]^2, \quad i > j \Rightarrow u_{ij} = 0$$

Ce sont des matrices de la forme:

$$U = \begin{pmatrix} u_{11} & \dots & u_{1n} \\ 0 & u_{22} & & \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & u_{nn} \end{pmatrix}$$

THÉORÈME 17.13:

L'ensemble des matrices triangulaires inférieures (resp. supérieures) est une sous-algèbre de $\mathfrak{M}_n(\mathbb{K})$ de dimension $\frac{n(n+1)}{2}$.

Remarque 198. Une matrice à la fois triangulaire inférieure et supérieure est diagonale.

17.5.4 Matrices symétriques, antisymétriques

Définition 17.15: Matrices symétriques, antisymétriques

On dit qu'une matrice carrée A est symétrique ssi $^tA = A$. On note \mathcal{S}_n l'ensemble des matrices symétriques.

On dit qu'une matrice carrée A est antisymétrique ssi ${}^tA = -A$. On note \mathcal{A}_n l'ensemble des matrices antisymétriques.

Тне́опѐме 17.14 :

 S_n est un sous-espace de $\mathfrak{M}_n(\mathbb{K})$ de dimension $\frac{n(n+1)}{2}$, A_n est un sous-espace de $\mathfrak{M}_n(\mathbb{K})$ de dimension $\frac{n(n-1)}{2}$,

$$\mathfrak{M}_n(\mathbb{K}) = \mathcal{S}_n \oplus \mathcal{A}_n$$

Remarque 199. S_n et A_n ne sont pas des sous-algèbres de $\mathfrak{M}_n(\mathbb{K})$.

17.6 Le groupe des matrices inversibles.

DÉFINITION 17.16: Matrices inversibles

Soit une matrice carrée $A \in \mathfrak{M}_n(\mathbb{K})$. On dit qu'elle est *inversible* ssi il existe une matrice $B \in \mathfrak{M}_n(\mathbb{K})$ telle que

$$AB = BA = I_n$$

On note $\mathcal{GL}_n(\mathbb{K})$ l'ensemble des matrices inversibles.

Théorème 17.15 : Elles forment un groupe

L'ensemble des matrices inversibles $(\mathcal{GL}_n(\mathbb{K}),\times)$ est un groupe (non-commutatif) d'élément neutre la matrice identité I_n .

Soit (E, n, \mathbb{K}) un ev et $e = (e_1, \dots, e_n)$ une base de E. L'application

$$\phi_e : \left\{ \begin{array}{ccc} (\mathcal{GL}(E), \circ) & \longrightarrow & (\mathcal{GL}_n(\mathbb{K}), \times) \\ u & \mapsto & Mat_e(u) \end{array} \right.$$

est un isomorphisme de groupes.

THÉORÈME 17.17 : Caractérisation des matrices inversibles

Soit une matrice carrée $A \in \mathfrak{M}_n(\mathbb{K})$. Les propriétés suivantes sont équivalentes:

- 1. $A \in \mathcal{GL}_n(\mathbb{K})$;
- 2. A est inversible à gauche: $\exists B \in \mathfrak{M}_n(\mathbb{K}) \text{ tq } BA = I_n$;
- 3. A est inversible à droite: $\exists B \in \mathfrak{M}_n(\mathbb{K}) \text{ tq } AB = I_n$;
- 4. $\forall X \in \mathfrak{M}_{n1}(\mathbb{K}), AX = 0 \Rightarrow X = 0;$
- 5. rg(A) = n.

Exercice 17-9

Soient deux matrices carrées $A, B \in \mathfrak{M}_n(\mathbb{K})$ vérifiant AB = 0. Montrer que si A est inversible, alors B = 0.

Exercice 17-10

Soit une matrice carrée $A \in \mathfrak{M}_n(\mathbb{K})$ inversible. Montrer que la matrice tA est inversible et déterminer son inverse $({}^tA)^{-1}$.

Exercice 17-11

Montrer que la matrice $A = \begin{pmatrix} 1 & 1 & 3 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$ est inversible en utilisant l'algorithme du rang, puis déterminer son

inverse A^{-1} en résolvant un système d'équations.

Exercice 17-12

Soit une matrice $A \in \mathfrak{M}_n(\mathbb{R})$ antisymétrique. On pose M = I + A.

- a) Soit une matrice colonne $X \in \mathfrak{M}_{n,1}(\mathbb{R})$. Calculer la matrice tXAX
- b) En déduire que la matrice M est inversible.

Exercice 17-13

On considère une matrice $A \in \mathfrak{M}_n(\mathbb{C})$, $A = ((a_{ij}))_{1 \leq i,j \leq n}$ à diagonale dominante :

$$\forall i \in [1, n]^2, \quad |a_{ii}| > \sum_{j \neq i} |a_{ij}|$$

Montrer que la matrice A est inversible.

Exercice 17-14

Déterminer l'inverse de la matrice carrée
$$A = \begin{pmatrix} 1 & & \mathbf{0} \\ a & \ddots & \\ & \ddots & \ddots \\ \mathbf{0} & & a & 1 \end{pmatrix}$$

17.7 Changement de bases

17.7.1 Matrices de passage

Définition 17.17 : matrice de passage

Soit un ev (E,n,\mathbb{K}) et deux bases $e=(e_1,\ldots,e_n),\ f=(f_1,\ldots,f_n)$ de l'espace E. On appelle matrice de passage de la base e vers la base f, la matrice

$$P_{e \to f} = Mat_e(f_1, \dots, f_n)$$

Théorème 17.18 : Inverse d'une matrice de passage

Si e, f, g sont trois bases de (E, n, \mathbb{K}) , alors

$$P_{e \to f} = Mat_{f,e}(id)$$

$$P_{e \to f} P_{f \to g} = P_{e \to g}$$

$$P_{e \to f}$$
 est inversible et $P_{e \to f}^{-1} = P_{f \to e}$

Théorème 17.19 : Une matrice inversible s'interprète en matrice de passage

Soit une matrice inversible $P \in \mathcal{GL}_n(\mathbb{K})$ et une base e de l'espace (E, n, \mathbb{K}) . Alors il existe une base f de E telle que

$$P = P_{e \to f}$$

17.7.2 Changement de coordonnées

Théorème 17.20 : Pour un vecteur

Soit un espace vectoriel (E, n, \mathbb{K}) et un vecteur $x \in E$. Soient deux bases e et f de l'espace E. On note

$$X = Mat_e(x), \quad X' = Mat_f(x)$$

La relation liant les matrices du même vecteur x dans deux bases différentes s'écrit:

$$X = P_{e \to f} X'$$

$$E \xrightarrow{\mathrm{id}_E} E$$

THÉORÈME 17.21: Pour une application linéaire

Soit une application linéaire $(E,p,\mathbb{K}) \xrightarrow{u} (F,n,\mathbb{K})$. Soient deux bases e,e' de E et deux bases f,f' de F.

$$A = Mat_{e,f}(u)$$
 et $A' = Mat_{e',f'}(u)$

Alors la relation liant les matrices d'une même application linéaire relativement à quatre bases différentes s'écrit :

$$\begin{array}{c|c}
A' = P_{f' \to f} A P_{e \to e'} \\
E & \xrightarrow{u} & F_{f} \\
id_{E} \uparrow & & \downarrow id_{F} \\
E & \xrightarrow{u} & F_{f'}
\end{array}$$

THÉORÈME 17.22 : Pour une forme linéaire

Soit une forme linéaire $(E,p,\mathbb{K}) \xrightarrow{\varphi} \mathbb{K}$. Soient deux bases e et e' de E. Si l'on note $L = \operatorname{Mat}_e(\varphi) \in \mathfrak{M}_{1n}(\mathbb{K})$ et $L' = \operatorname{Mat}_{e'}(\varphi) \in \mathfrak{M}_{1n}(\mathbb{K})$, alors la relation liant les matrices de la même forme linéaire dans deux bases différentes s'écrit :

$$L' = LP_{e \to e'}$$

$$E \xrightarrow{\varphi} \underset{(1_{\mathbb{K}})}{\mathbb{K}}$$

$$id_{E} \uparrow \qquad \qquad \downarrow id_{\mathbb{K}}$$

$$E \xrightarrow{\varphi} \underset{(1_{\mathbb{K}})}{\mathbb{K}}$$

THÉORÈME 17.23 : Pour un endomorphisme

Soit un endomorphisme $(E,n,\mathbb{K}) \xrightarrow{u} (E,n,\mathbb{K})$. Soient deux bases e,e' de E. Notons $P = P_{e \to e'}$ la matrice de passage entre les deux bases, et

$$A = Mat_e(u), \quad A' = Mat_{e'}(u)$$

Alors, la relation liant les matrices du même endomorphisme dans deux bases différentes s'écrit:

$$Mat_e(u) = P_{e \to e'} Mat_{e'}(u) P_{e' \to e}$$

$$\begin{array}{ccc}
A = PA'P^{-1} \\
E & \xrightarrow{u} & E \\
e & & \downarrow id_{E} \\
E & \xrightarrow{u} & E \\
e' & & e'
\end{array}$$

Exercice 17-15

Soit l'espace vectoriel $E = \mathbb{R}^2$, et les deux vecteurs $f_1 = (1,2), f_2 = (1,3)$.

- a. Montrer que le système $f = (f_1, f_2)$ est une base de E.
- b. Soit e la base canonique de \mathbb{R}^2 . Ecrire la matrice de passage $P_{e \to f}$.
- c. Soit le vecteur x = (4,1). Trouver matriciellement les coordonnées du vecteur x dans la base f.
- d. Soit l'endomorphisme $u: \begin{cases} E \longrightarrow E \\ (x,y) \mapsto (2x+y,x-y) \end{cases}$. Écrire les matrices de cet endomorphisme dans les bases e et $f: M \cap F(x) \to F(x)$ les bases e et $f: Mat_e(u)$ et $Mat_f(u)$

Exercice 17-16

 $E=\mathbb{R}^2$. Déterminer tous les endomorphismes $u\in L(E)$ tels que:

$$Ker(u) = Vect(1,2)$$
, et $Im u = Vect(1,1)$

Matrices semblables 17.7.3

DÉFINITION 17.18:

Soient $A,B \in \mathfrak{M}_n(\mathbb{K})$ deux matrices carrées. On dit qu'elles sont semblables ssi

$$\exists P \in \mathcal{GL}_n(\mathbb{K}) \text{ tq } B = PAP^{-1}$$

Remarque 200. Cela définit une relation d'équivalence sur $\mathfrak{M}_n(\mathbb{K})$.

Théorème 17.24: Deux matrices sont semblables si elles représentent le même endomorphisme dans deux bases différentes

Soit un ev (E, n, \mathbb{K}) et deux matrices carrées $A, B \in \mathfrak{M}_n(\mathbb{K})$. Les matrices A et B sont semblables ssi il existe deux bases de E, e, e' et un endomorphisme $u \in L(E)$ tels que

$$A = Mat_e(u)$$
, et $B = Mat_{e'}(u)$

Théorème 17.25 : Puissances de matrices semblables

Si deux matrices A et B sont semblables: $A = PBP^{-1}$, alors $\forall k \in \mathbb{N}$,

$$A^k = PB^k P^{-1}$$

THÉORÈME 17.26: Deux matrices semblables ont même trace

Si deux matrices A et B sont semblables, alors elles ont même trace: Tr(A) = Tr(B).

DÉFINITION 17.19 : Trace d'un endomorphisme

Soit un endomorphisme $u \in L(E)$. Soit une base e quelconque de l'espace E. On appelle trace de l'endomorphisme u, la trace de la matrice $Mat_e(u)$. Ce scalaire ne dépend pas de la base e choisie pour le calculer.

Exercice 17-17

Soient deux matrices semblables $A,B \in \mathfrak{M}_n(\mathbb{K})$. Montrer que les matrices tA et tB sont semblables.

■ Exercice 17-18

Déterminer l'expression analytique de la projection sur F = Vect(1,2) parallèlement à G = Vect(1,-1).

Exercice 17-19

Les matrices $A = \begin{pmatrix} 3 & 4 & 0 \\ 2 & 2 & 0 \\ 1 & -1 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 2 & 3 & 0 \\ 1 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix}$ sont-elles semblables?

Exercice 17-20

Montrer que les matrices $A=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et $B=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ sont semblables.

Exercice 17-21

Soit une matrice $A \in \mathfrak{M}_n(\mathbb{R})$ vérifiant $A^2 = A$. Montrer que $\operatorname{Tr}(A) \in \mathbb{N}$.

Exercice 17-22

Soit un ev (E,n,\mathbb{R}) de dimension n et un endomorphisme $u\in L(E)$ nilpotent d'indice n. Montrer que $\mathrm{Tr}(u)=0$.

Exercice 17-23

On considère l'espace $E = \mathbb{R}_n[X]$ et l'endomorphisme $D : \left\{ \begin{array}{ccc} E & \longrightarrow & E \\ P & \mapsto & P' \end{array} \right.$ Écrire la matrice de D dans la base canonique. Quelle-est la base la mieux adaptée pour représenter D?

17.8 Rang d'une matrice

Définition 17.20 : rang

Soit une matrice $A \in \mathfrak{M}_{np}(\mathbb{K})$ rectangulaire et $C_1, \ldots, C_p \in \mathbb{K}^n$ ses vecteurs colonnes.

On appelle rang de la matrice A, le rang du système de vecteurs (C_1, \ldots, C_p) dans l'espace \mathbb{K}^n .

Proposition 17.27 : Le rang d'une matrice est le rang de l'application linéaire qu'elle représente

Soit deux espaces vectoriels (E,p,\mathbb{K}) , (F,n,\mathbb{K}) munis de deux bases e et f. Soit une matrice $A \in \mathfrak{M}_{np}(\mathbb{K})$. On sait qu'il existe une unique application linéaire $u \in L(E,F)$ telle que $\mathrm{Mat}_{e,f}(u) = A$. Alors

$$rg(A) = rg(u) = \dim \operatorname{Im} u$$

DÉFINITION 17.21 : Matrice $I_r(n,p)$

Soient deux entiers n, p et un entier $r \leq \min(n,p)$. On définit la matrice

$$I_r(n,p) = \begin{pmatrix} 1 & & & & & \mathbf{0} \\ & \ddots & & & & & \\ & & 1 & & & & \\ & & & 0 & & & \\ & & & \ddots & & \\ \mathbf{0} & & & & 0 & \dots 0 \end{pmatrix}$$

On a
$$\operatorname{rg}(I_r(n,p)) = r$$
.

Théorème 17.28 : Caractérisation du rang

Soit une matrice rectangulaire $A \in \mathfrak{M}_{np}(\mathbb{K})$. Soit $r \in [0, \min(n,p)]$. Alors

$$(\exists P \in GL_n(\mathbb{K}), \exists Q \in GL_p(\mathbb{K}) \text{ telles que } A = PI_r(n,p)Q) \iff (\operatorname{rg}(A) = r)$$

Remarque 201. Étudier la démonstration de $(ii) \Rightarrow (i)$: elle est typique de construction de bases adaptées.

Théorème 17.29 : Une matrice et sa transposée ont même rang

Soit une matrice rectangulaire $A \in \mathfrak{M}_{n,p}(\mathbb{K})$, alors

$$\operatorname{rg}(^t A) = \operatorname{rg}(A)$$

 $Remarque\ 202$. Comme conséquence, on peut utiliser à la fois les lignes et les colonnes dans l'algorithme du rang.

Remarque 203. On définit sur $\mathfrak{M}_{np}(\mathbb{K})$ une relation d'équivalence par :

$$\forall (A,B) \in \mathfrak{M}_{np}(\mathbb{K})^2, \quad A\mathcal{R}B \iff \exists P \in \mathrm{GL}_n(\mathbb{K}), \ \exists Q \in \mathrm{GL}_p(\mathbb{K}) \ \text{telles que } A = PBQ$$

Si ARB, on dit que les matrices A et B sont équivalentes. Cette relation est plus simple que la relation de similitude : deux matrices sont équivalentes si et seulement si elles ont même rang.

Exercice 17-24

Montrer que deux matrices semblables ont même trace et même rang.

Trouver deux matrices $A,B \in \mathfrak{M}_2(\mathbb{R})$ de même rang et même trace qui ne sont pas semblables.

Exercice 17-25

Endomorphismes de rang 1

- a. Soit (E, n, \mathbb{K}) et un endomorphisme $f \in L(E)$ de rang 1. Montrer qu'il existe $\lambda \in \mathbb{K}$ tel que $f^2 = \lambda f$.
- b. Soit $A \in \mathfrak{M}_n(\mathbb{K})$. Montrer que $(\operatorname{rg}(A) = 1) \iff (\exists (X,Y) \in \mathfrak{M}_{n1}(\mathbb{K})^2 \ A = X^t Y)$.