Tles $S_1 - S_4 - S_5 - S_6$

Mathématiques – DS8

28/04/2014

Exercice 1

On donne les nombres complexes suivants: $z_1 = 1 - i$ et $z_2 = \frac{\sqrt{6} - i\sqrt{2}}{2}$

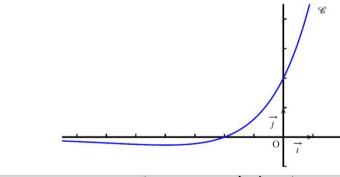
- **1.** Déterminer une forme exponentielle de z_1 , z_2 et $\frac{z_1}{z_2}$.
- **2.** Déterminer la forme algébrique de $\frac{z_1}{z_2}$.
- 3. En déduire les valeurs exactes de $\cos{\left(-\frac{\pi}{12}\right)}$, $\sin{\left(-\frac{\pi}{12}\right)}$, $\cos{\left(\frac{\pi}{12}\right)}$ et $\sin{\left(\frac{\pi}{12}\right)}$.

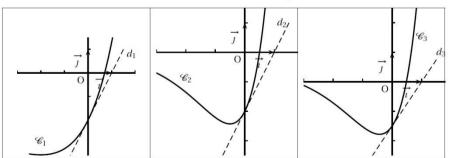
Exercice 2

Soit f une fonction définie et dérivable sur \mathbb{R} . On note \mathcal{C} sa courbe représentative dans le plan muni d'un repère $(0; \vec{\imath}, \vec{j})$.

Partie A

Sur les graphiques ci-dessous, on a représenté la courbe \mathcal{C} et trois autres courbes \mathcal{C}_1 , \mathcal{C}_2 , \mathcal{C}_3 avec la tangente en leur point d'abscisse 0.





- **1.** Donner par lecture graphique, le signe de f(x) selon les valeurs de x.
- **2.** On désigne par F une primitive de la fonction f sur \mathbb{R} .
 - **a.** À l'aide de la courbe C, déterminer F'(0) et F'(-2).
 - **b.** L'une des courbes C_1 , C_2 , C_3 est la courbe représentative de la fonction F.

Déterminer laquelle en justifiant l'élimination des deux autres.

Partie B

Dans cette partie, on admet que la fonction f évoquée dans la **partie** A est la fonction définie sur \mathbb{R} par $f(x) = (x + 2) \exp\left(\frac{1}{2}x\right)$

- 1. L'observation de la courbe $\mathcal C$ permet de conjecturer que la fonction f admet un minimum.
 - **a.** Démontrer que pour tout réel x, $f'(x) = \frac{1}{2}(x + 4) \exp\left(\frac{1}{2}x\right)$
 - b. En déduire une validation de la conjecture précédente.
- **2.** On pose $I = \int_0^1 f(x) dx$
 - a. Interpréter géométriquement le réel I.
 - **b.** Soient u et v les fonctions définies sur \mathbb{R} par u(x) = x et $v(x) = \exp\left(\frac{1}{2}x\right)$ Vérifier que f = 2(u'v + uv').
 - **c.** En déduire la valeur exacte de l'intégrale *I* .
- 3. On donne l'algorithme ci-dessous.

Variables: k et n sont des nombres entiers naturels.

 $n \neq 0$

s est un nombre réel.

Entrée:

Initialisation : Demander à l'utilisateur la valeur de n.

Traitement : Affecter à s la valeur 0.

Pour k allant de 0 à n-1

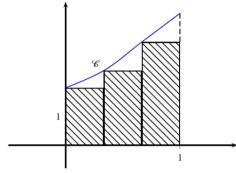
Affecter à s la valeur $s + \frac{1}{n} f\left(\frac{k}{n}\right)$

Fin de boucle

Sortie: Afficher s.

On note s_n le nombre affiché par cet algorithme lorsque l'utilisateur entre un entier naturel strictement positif comme valeur de n.

a. Que représente s_3 dans l'algorithme ? Justifier.



b. Que dire de la valeur de s_n fournie par l'algorithme lorsque n devient grand ?

Exercice 3

Le plan est rapporté à un repère orthonormal $(0; \vec{i}, \vec{j})$.

1. Étude d'une fonction *f*

On considère la fonction f définie sur l'intervalle]0; $+\infty[$ par :

$$f(x) = \frac{\ln x}{x}$$

On note f' la fonction dérivée de la fonction f sur l'intervalle $]0; +\infty[$. On note C_f la courbe représentative de la fonction f dans le repère $(0; \vec{i}, \vec{j})$. La courbe C_f est représentée en <u>annexe 1 (à rendre avec la copie)</u>.

- **a.** Déterminer les limites de la fonction f en 0 et en $+\infty$.
- **b.** Calculer la dérivée f' de la fonction f.
- **c.** En déduire les variations de la fonction f.
- **2.** Étude d'une fonction *g*

On considère la fonction g définie sur l'intervalle]0; $+\infty[$ par :

$$g(x) = \frac{(\ln x)^2}{x}$$

On note Cg la courbe représentative de la fonction g dans le repère $(0; \vec{\imath}, \vec{\jmath})$.

a. Déterminer la limite de g en 0, puis en $+\infty$.

Indication : après l'avoir justifiée, on utilisera la relation suivante :

$$\frac{(\ln x)^2}{x} = 4\left(\frac{\ln\sqrt{x}}{\sqrt{x}}\right)^2$$

- **b.** Calculer la dérivée g ' de la fonction g .
- **c.** Dresser le tableau de variations de la fonction g.
- **3.** a. Démontrer que les courbes C_f et C_g possèdent deux points communs dont on précisera les coordonnées.
 - **b.** Étudier la position relative des courbes C_f et C_g .
- c. Tracer sur le graphique de <u>l'annexe 1 (à rendre avec la copie)</u> la courbe \mathcal{C}_g .
- **4.** On désigne par \mathcal{D} la partie du plan délimitée d'une part par les courbes \mathcal{C}_f et \mathcal{C}_g , et d'autre part par les droites d'équations respectives x=1 et x=e.

On désigne par \mathcal{A} l'aire (exprimée en unités d'aire) du domaine \mathcal{D} .

- **a.** Sur l'annexe 1, hachurer le domaine \mathcal{D} .
- **b.** En l'exprimant l'aire \mathcal{A} comme différence de deux aires que l'on précisera, calculer l'aire \mathcal{A} .

Nom : Prénom : Classe :

Annexe 1
(à rendre avec la copie)

