

Suites

1 Convergence

Exercice 1

Montrer que toute suite convergente est bornée.

Indication ▼ Correction ▼ Vidéo ■ [000506]

Exercice 2

Montrer qu'une suite d'entiers qui converge est constante à partir d'un certain rang.

Indication ▼ Correction ▼ Vidéo ■ [000519]

Exercice 3

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par

 $u_n = (-1)^n + \frac{1}{n}$

n'est pas convergente.

Indication ▼ Correction ▼ Vidéo ■ [000507]

Exercice 4

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de \mathbb{R} . Que pensez-vous des propositions suivantes :

- Si $(u_n)_n$ converge vers un réel ℓ alors $(u_{2n})_n$ et $(u_{2n+1})_n$ convergent vers ℓ .
- Si $(u_{2n})_n$ et $(u_{2n+1})_n$ sont convergentes, il en est de même de $(u_n)_n$.
- Si $(u_{2n})_n$ et $(u_{2n+1})_n$ sont convergentes, de même limite ℓ , il en est de même de $(u_n)_n$.

Indication ▼ Correction ▼ Vidéo ■ [000505]

Exercice 5

Soit q un entier au moins égal à 2. Pour tout $n \in \mathbb{N}$, on pose $u_n = \cos \frac{2n\pi}{q}$.

- 1. Montrer que $u_{n+q} = u_n$ pour tout $n \in \mathbb{N}$.
- 2. Calculer u_{nq} et u_{nq+1} . En déduire que la suite (u_n) n'a pas de limite.

Indication ▼ Correction ▼ Vidéo ■ [000524]

Exercice 6

 $\overline{\operatorname{Soit} H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}}.$

- 1. En utilisant une intégrale, montrer que pour tout n > 0: $\frac{1}{n+1} \le \ln(n+1) \ln(n) \le \frac{1}{n}$.
- 2. En déduire que $\ln(n+1) \le H_n \le \ln(n) + 1$.
- 3. Déterminer la limite de H_n .
- 4. Montrer que $u_n = H_n \ln(n)$ est décroissante et positive.
- 5. Conclusion?

Indication ▼ Correction ▼ Vidéo ■ [000520]

Exercice 7

On considère la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par

$$f(x) = \frac{x^3}{9} + \frac{2x}{3} + \frac{1}{9}$$

et on définit la suite $(x_n)_{n\geq 0}$ en posant $x_0=0$ et $x_{n+1}=f(x_n)$ pour $n\in\mathbb{N}$.

- 1. Montrer que l'équation $x^3 3x + 1 = 0$ possède une solution unique $\alpha \in]0, 1/2[$.
- 2. Montrer que l'équation f(x) = x est équivalente à l'équation $x^3 3x + 1 = 0$ et en déduire que α est l'unique solution de l'équation f(x) = x dans l'intervalle [0, 1/2].
- 3. Montrer que la fonction f est croissante sur \mathbb{R}^+ et que $f(\mathbb{R}^+) \subset \mathbb{R}^+$. En déduire que la suite (x_n) est croissante.
- 4. Montrer que f(1/2) < 1/2 et en déduire que $0 \le x_n < 1/2$ pour tout $n \ge 0$.
- 5. Montrer que la suite $(x_n)_{n\geq 0}$ converge vers α .

Indication ▼

Correction ▼

[000539]

2 Limites

Posons $u_2 = 1 - \frac{1}{2^2}$ et pour tout entier $n \ge 3$,

$$u_n = \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right).$$

Calculer u_n . En déduire que l'on a $\lim u_n = \frac{1}{2}$.

Indication ▼

[000563]

Exercice 9

Déterminer les limites lorsque n tend vers l'infini des suites ci-dessous; pour chacune, essayer de préciser en quelques mots la méthode employée.

1. 1;
$$-\frac{1}{2}$$
; $\frac{1}{3}$; ...; $\frac{(-1)^{n-1}}{n}$; ...

2.
$$2/1$$
; $4/3$; $6/5$; ...; $2n/(2n-1)$; ...

4.
$$\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n-1}{n^2}$$

5.
$$\frac{(n+1)(n+2)(n+3)}{n^3}$$

5.
$$\frac{(n+1)(n+2)(n+3)}{n^3}$$
6.
$$\left[\frac{1+3+5+\dots+(2n-1)}{n+1} - \frac{2n+1}{2}\right]$$

7.
$$\frac{n+(-1)^n}{n-(-1)^n}$$

8.
$$\frac{2^{n+1}+3^{n+1}}{2^n+3^n}$$

9.
$$(1/2+1/4+1/8+\cdots+1/2^n)$$
 puis $\sqrt{2}$; $\sqrt{2\sqrt{2}}$; $\sqrt{2\sqrt{2\sqrt{2}}}$; ...

10.
$$\left(1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \dots + \frac{(-1)^n}{3^n}\right)$$

11.
$$(\sqrt{n+1} - \sqrt{n})$$

$$12. \ \frac{n\sin(n!)}{n^2+1}$$

13. Démontrer la formule
$$1 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$$
; en déduire $\lim_{n \to \infty} \frac{1+2^2+3^2+\dots+n^2}{n^3}$.

Correction ▼

Vidéo

[000568]

Exercice 10

On considère les deux suites :

$$u_n = 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} ; n \in \mathbb{N},$$

 $v_n = u_n + \frac{1}{n!} ; n \in \mathbb{N}.$

Indication ▼ Correction ▼

Vidéo |

[000570]

Exercice 11

Soit a > 0. On définit la suite $(u_n)_{n \ge 0}$ par u_0 un réel vérifiant $u_0 > 0$ et par la relation

$$u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right).$$

On se propose de montrer que (u_n) tend vers \sqrt{a} .

1. Montrer que

$$u_{n+1}^2 - a = \frac{(u_n^2 - a)^2}{4u_n^2}.$$

- 2. Montrer que si $n \ge 1$ alors $u_n \ge \sqrt{a}$ puis que la suite $(u_n)_{n \ge 1}$ est décroissante.
- 3. En déduire que la suite (u_n) converge vers \sqrt{a} .
- 4. En utilisant la relation $u_{n+1}^2 a = (u_{n+1} \sqrt{a})(u_{n+1} + \sqrt{a})$ donner une majoration de $u_{n+1} \sqrt{a}$ en fonction de $u_n \sqrt{a}$.
- 5. Si $u_1 \sqrt{a} \le k$ et pour $n \ge 1$ montrer que

$$u_n - \sqrt{a} \le 2\sqrt{a} \left(\frac{k}{2\sqrt{a}}\right)^{2^{n-1}}.$$

6. Application : Calculer $\sqrt{10}$ avec une précision de 8 chiffres après la virgule, en prenant $u_0 = 3$.

Indication ▼

Correction ▼

Vidéo

[000569]

Exercice 12

Soient a et b deux réels, a < b. On considère la fonction $f : [a,b] \longrightarrow [a,b]$ supposée continue et une suite récurrente $(u_n)_n$ définie par :

$$u_0 \in [a,b]$$
 et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.

- 1. On suppose ici que f est croissante. Montrer que $(u_n)_n$ est monotone et en déduire sa convergence vers une solution de l'équation f(x) = x.
- 2. Application. Calculer la limite de la suite définie par :

$$u_0 = 4$$
 et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{4u_n + 5}{u_n + 3}$

- 3. On suppose maintenant que f est décroissante. Montrer que les suites $(u_{2n})_n$ et $(u_{2n+1})_n$ sont monotones et convergentes.
- 4. Application. Soit

$$u_0 = \frac{1}{2}$$
 et pour tout $n \in \mathbb{N}$, $u_{n+1} = (1 - u_n)^2$.

Calculer les limites des suites $(u_{2n})_n$ et $(u_{2n+1})_n$.

Indication ▼

Correction ▼

Vidéo 📕

[000571]

Exercice 13

- 1. Soient a, b > 0. Montrer que $\sqrt{ab} \leqslant \frac{a+b}{2}$.
- 2. Montrer les inégalités suivantes ($b \ge a > 0$):

$$a \leqslant \frac{a+b}{2} \leqslant b$$
 et $a \leqslant \sqrt{ab} \leqslant b$.

3. Soient u_0 et v_0 des réels strictement positifs avec $u_0 < v_0$. On définit deux suites (u_n) et (v_n) de la façon suivante :

$$u_{n+1} = \sqrt{u_n v_n}$$
 et $v_{n+1} = \frac{u_n + v_n}{2}$.

- (a) Montrer que $u_n \leq v_n$ quel que soit $n \in \mathbb{N}$.
- (b) Montrer que (v_n) est une suite décroissante.
- (c) Montrer que (u_n) est croissante En déduire que les suites (u_n) et (v_n) sont convergentes et quelles ont même limite.

Indication ▼

Correction ▼

Vidéo 📕

[000572]

Exercice 14

Soit n > 1.

- 1. Montrer que l'équation $\sum_{k=1}^{n} x^k = 1$ admet une unique solution, notée a_n , dans [0,1].
- 2. Montrer que $(a_n)_{n\in\mathbb{N}}$ est décroissante minorée par $\frac{1}{2}$.
- 3. Montrer que (a_n) converge vers $\frac{1}{2}$.

Indication ▼ Correction ▼ Vidéo ■ [000574]

Indication pour l'exercice 1 A

Écrire la définition de la convergence d'une suite (u_n) avec les " ε ". Comme on a une proposition qui est vraie pour tout $\varepsilon > 0$, c'est en particulier vrai pour $\varepsilon = 1$. Cela nous donne un "N". Ensuite séparez la suite en deux : regardez les n < N (il n'y a qu'un nombre fini de termes) et les $n \ge N$ (pour lequel on utilise notre $\varepsilon = 1$).

Indication pour l'exercice 2 A

Écrire la convergence de la suite et fixer $\varepsilon = \frac{1}{2}$. Une suite est *stationnaire* si, à partir d'un certain rang, elle est constante.

Indication pour l'exercice 3

On prendra garde à ne pas parler de limite d'une suite sans savoir au préalable qu'elle converge!

Vous pouvez utiliser le résultat du cours suivant : Soit (u_n) une suite convergeant vers la limite ℓ alors toute sous-suite (v_n) de (u_n) a pour limite ℓ .

Indication pour l'exercice 4 A

Dans l'ordre c'est vrai, faux et vrai. Lorsque c'est faux chercher un contre-exemple, lorsque c'est vrai il faut le prouver.

Indication pour l'exercice 5 ▲

Pour la deuxième question, raisonner par l'absurde et trouver deux sous-suites ayant des limites distinctes.

Indication pour l'exercice 6 ▲

1. En se rappelant que l'intégrale calcule une aire montrer :

$$\frac{1}{n+1} \leqslant \int_{n}^{n+1} \frac{dt}{t} \leqslant \frac{1}{n}.$$

- 2. Pour chacune des majorations, il s'agit de faire la somme de l'inégalité précédente et de s'apercevoir que d'un coté on calcule H_n et de l'autre les termes s'éliminent presque tous deux à deux.
- 3. La limite est $+\infty$.
- 4. Calculer $u_{n+1} u_n$.
- 5. C'est le théorème de Bolzano-Weierstrass.

Indication pour l'exercice 7 ▲

Pour la première question : attention on ne demande pas de calculer α ! L'existence vient du théorème des valeurs intermédiaires. L'unicité vient du fait que la fonction est strictement croissante.

Pour la dernière question : il faut d'une part montrer que (x_n) converge et on note ℓ sa limite et d'autre part il faut montrer que $\ell = \alpha$.

Indication pour l'exercice 8 ▲

Remarquer que $1 - \frac{1}{k^2} = \frac{(k-1)(k+1)}{k \cdot k}$. Puis simplifier l'écriture de u_n .

Indication pour l'exercice 10 ▲

- 1. Montrer que (u_n) est croissante et (v_n) décroissante.
- 2. Montrer que (u_n) est majorée et (v_n) minorée. Montrer que ces suites ont la même limite.
- 3. Raisonner par l'absurde : si la limite $\ell = \frac{p}{q}$ alors multiplier l'inégalité $u_q \le \frac{p}{q} \le v_q$ par q! et raisonner avec des entiers.

Indication pour l'exercice 11

- 1. C'est un calcul de réduction au même dénominateur.
- 2. Pour montrer la décroisance, montrer $\frac{u_{n+1}}{u_n} \leq 1$.
- 3. Montrer d'abord que la suite converge, montrer ensuite que la limite est \sqrt{a} .
- 4. Penser à écrire $u_{n+1}^2 a = (u_{n+1} \sqrt{a})(u_{n+1} + \sqrt{a})$.
- 5. Raisonner par récurrence.

6. Pour $u_0 = 3$ on a $u_1 = 3,166...$, donc $3 \le \sqrt{10} \le u_1$ et on peut prendre k = 0.17 par exemple et n = 4 suffit pour la précision demandée.

Indication pour l'exercice 12 ▲

Pour la première question et la monotonie il faut raisonner par récurrence. Pour la troisième question, remarquer que si f est décroissante alors $f \circ f$ est croissante et appliquer la première question.

Indication pour l'exercice 13 ▲

- 1. Regarder ce que donne l'inégalité en élevant au carré de chaque coté.
- 2. Petites manipulations des inégalités.
- 3. (a) Utiliser 1.
 - (b) Utiliser 2.
 - (c) Une suite croissante et majorée converge ; une suite décroissante et minorée aussi.

Indication pour l'exercice 14 ▲

On notera $f_n: [0,1] \longrightarrow \mathbb{R}$ la fonction définie par $f_n(x) = \sum_{k=1}^n x^k - 1$.

- 1. C'est une étude de la fonction f_n .
- 2. On sait que $f_n(a_n) = 0$. Montrer par un calcul que $f_n(a_{n-1}) > 0$, en déduire la décroissance de (a_n) . En calculant $f_n(\frac{1}{2})$ montrer que la suite (a_n) est minorée par $\frac{1}{2}$.
- 3. Une fois établie la convergence de (a_n) vers une limite ℓ , composer l'inégalité $\frac{1}{2} \leqslant \ell < a_n$ par f_n . Conclure.

Correction de l'exercice 1

Soit (u_n) une suite convergeant vers $\ell \in \mathbb{R}$. Par définition

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geqslant N \qquad |u_n - \ell| < \varepsilon.$$

Choisissons $\varepsilon = 1$, nous obtenons le N correspondant. Alors pour $n \ge N$, nous avons $|u_n - \ell| < 1$; autrement dit $\ell - 1 < u_n < \ell + 1$. Notons $M = \max_{n=0,\dots,N-1} \{u_n\}$ et puis $M' = \max(M,\ell+1)$. Alors pour tout $n \in \mathbb{N}$ $u_n \le M'$. De même en posant $m = \min_{n=0,\dots,N-1} \{u_n\}$ et $m' = \min(m,\ell-1)$ nous obtenons pour tout $n \in \mathbb{N}$, $u_n \ge m'$.

Correction de l'exercice 2

Soit (u_n) une suite d'entiers qui converge vers $\ell \in \mathbb{R}$. Dans l'intervalle $I =]\ell - \frac{1}{2}, \ell + \frac{1}{2}[$ de longueur 1, il existe au plus un élément de \mathbb{N} . Donc $I \cap \mathbb{N}$ est soit vide soit un singleton $\{a\}$.

La convergence de (u_n) s'écrit :

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \text{tel que} \ (n \geqslant N \Rightarrow |u_n - \ell| < \varepsilon).$$

Fixons $\varepsilon = \frac{1}{2}$, nous obtenors un N correspondant. Et pour $n \ge N$, $u_n \in I$. Mais de plus u_n est un entier, donc

$$n \geqslant N \Rightarrow u_n \in I \cap \mathbb{N}$$
.

En conséquent, $I \cap \mathbb{N}$ n'est pas vide (par exemple u_N en est un élément) donc $I \cap \mathbb{N} = \{a\}$. L'implication précédente s'écrit maintenant :

$$n \geqslant N \Rightarrow u_n = a$$
.

Donc la suite (u_n) est stationnaire (au moins) à partir de N. En prime, elle est bien évidemment convergente vers $\ell = a \in \mathbb{N}$.

Correction de l'exercice 3

Il est facile de se convaincre que (u_n) n'a pas de limite, mais plus délicat d'en donner une démonstration formelle. En effet, dès lors qu'on ne sait pas qu'une suite (u_n) converge, on ne peut pas écrire $\lim u_n$, c'est un nombre qui n'est pas défini. Par exemple l'égalité

$$\lim_{n\to\infty} (-1)^n + 1/n = \lim_{n\to\infty} (-1)^n$$

n'a pas de sens. Par contre voilà ce qu'on peut dire : Comme la suite 1/n tend vers 0 quand $n \to \infty$, la suite u_n est convergente si et seulement si la suite $(-1)^n$ l'est. De plus, dans le cas où elles sont toutes les deux convergentes, elles ont même limite. Cette affirmation provient tout simplement du théorème suivant

Théorème: Soient (u_n) et (v_n) deux suites convergeant vers deux limites ℓ et ℓ' . Alors la suite (w_n) définie par $w_n = u_n + v_n$ est convergente (on peut donc parler de sa limite) et $\lim w_n = \ell + \ell'$.

De plus, il n'est pas vrai que toute suite convergente doit forcément être croissante et majorée ou décroissante et minorée. Par exemple, $(-1)^n/n$ est une suite qui converge vers 0 mais qui n'est ni croissante, ni décroissante.

Voici maintenant un exemple de rédaction de l'exercice. On veut montrer que la suite (u_n) n'est pas convergente. Supposons donc par l'absurde qu'elle soit convergente et notons $\ell = \lim_{n \to \infty} u_n$. (Cette expression a un sens puisqu'on suppose que u_n converge).

Rappel. Une *sous-suite* de (u_n) (on dit aussi *suite extraite* de (u_n)) est une suite (v_n) de la forme $v_n = u_{\phi(n)}$ où ϕ est une application strictement croissante de $\mathbb N$ dans $\mathbb N$. Cette fonction ϕ correspond "au choix des indices qu'on veut garder" dans notre sous-suite. Par exemple, si on ne veut garder dans la suite (u_n) que les termes pour lesquels n est un multiple de trois, on pourra poser $\phi(n) = 3n$, c'est à dire $v_n = u_{3n}$.

Considérons maintenant les sous-suites $v_n = u_{2n}$ et $w_n = u_{2n+1}$ de (u_n) . On a que $v_n = 1 + 1/2n \to 1$ et que $w_n = -1 + 1/(2n+1) \to -1$. Or on a le théorème suivant sur les sous-suites d'une suite convergente :

Théorème: Soit (u_n) une suite convergeant vers la limite ℓ (le théorème est encore vrai si $\ell = +\infty$ ou $\ell = -\infty$). Alors, toute sous-suite (v_n) de (u_n) a pour limite ℓ .

Par conséquent, ici, on a que $\lim v_n = \ell$ et $\lim w_n = \ell$ donc $\ell = 1$ et $\ell = -1$ ce qui est une contradiction. L'hypothèse disant que (u_n) était convergente est donc fausse. Donc (u_n) ne converge pas.

Correction de l'exercice 4 A

- 1. Vrai. Toute sous-suite d'une suite convergente est convergente et admet la même limite (c'est un résultat du cours).
- 2. Faux. Un contre-exemple est la suite $(u_n)_n$ définie par $u_n = (-1)^n$. Alors $(u_{2n})_n$ est la suite constante (donc convergente) de valeur 1, et $(u_{2n+1})_n$ est constante de valeur -1. Cependant la suite $(u_n)_n$ n'est pas convergente.
- 3. Vrai. La convergence de la suite $(u_n)_n$ vers ℓ , que nous souhaitons démontrer, s'écrit :

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \text{tel que} \ (n \geqslant N \Rightarrow |u_n - \ell| < \varepsilon).$$

Fixons $\varepsilon > 0$. Comme, par hypothèse, la suite $(u_{2p})_p$ converge vers ℓ alors il existe N_1 tel

$$2p \geqslant N_1 \Rightarrow |u_{2p} - \ell| < \varepsilon.$$

Et de même, pour la suite $(u_{2p+1})_p$ il existe N_2 tel que

$$2p+1 \geqslant N_2 \Rightarrow |u_{2p+1}-\ell| < \varepsilon.$$

$$n \geqslant N \Rightarrow |u_n - \ell| < \varepsilon$$
.

Ce qui prouve la convergence de $(u_n)_n$ vers ℓ .

Correction de l'exercice 5

- 1. $u_{n+q} = \cos\left(\frac{2(n+q)\pi}{q}\right) = \cos\left(\frac{2n\pi}{q} + 2\pi\right) = \cos\left(\frac{2n\pi}{q}\right) = u_n$.
- 2. $u_{nq} = \cos\left(\frac{2nq\pi}{q}\right) = \cos\left(2n\pi\right) = 1 = u_0$ et $u_{nq+1} = \cos\left(\frac{2(nq+1)\pi}{q}\right) = \cos\left(\frac{2\pi}{q}\right) = u_1$. Supposons, par l'absurde que (u_n) converge vers ℓ . Alors la sous-suite $(u_{nq})_n$ converge vers ℓ comme $u_{nq} = u_0 = 1$ pour tout n alors $\ell = 1$. D'autre part la sous-suite $(u_{nq+1})_n$ converge aussi vers ℓ , mais $u_{nq+1} = u_1 = \cos\frac{2\pi}{q}$, donc $\ell = \cos\frac{2\pi}{q}$. Nous obtenons une contradiction car pour $q \ge 2$, nous avons $\cos\frac{2\pi}{q} \ne 1$. Donc la suite (u_n) ne converge pas.

Correction de l'exercice 6 ▲

1. La fonction $t \mapsto \frac{1}{t}$ est décroissante sur [n, n+1] donc

$$\frac{1}{n+1} \leqslant \int_{n}^{n+1} \frac{dt}{t} \leqslant \frac{1}{n}$$

(C'est un encadrement de l'aire de l'ensemble des points (x,y) du plan tels que $x \in [n,n+1]$ et $0 \le y \le 1/x$ par l'aire de deux rectangles.) Par calcul de l'intégrale nous obtenons l'inégalité :

$$\frac{1}{n+1} \leqslant \ln(n+1) - \ln(n) \leqslant \frac{1}{n}.$$

- 2. $H_n = \frac{1}{n} + \frac{1}{n-1} + \dots + \frac{1}{2} + 1$, nous majorons chaque terme de cette somme en utilisant l'inégalité $\frac{1}{k} \le \ln(k) \ln(k-1)$ obtenue précédemment : nous obtenons $H_n \le \ln(n) \ln(n-1) + \ln(n-1) \ln(n-2) + \dots \ln(2) + \ln(2) \ln(1) + 1$. Cette somme est télescopique (la plupart des termes s'éliminent et en plus $\ln(1) = 0$) et donne $H_n \le \ln(n) + 1$. L'autre inégalité s'obtient de la façon similaire en utilisant l'inégalité $\ln(k+1) \ln(k) \le \frac{1}{k}$.
- 3. Comme $H_n \geqslant \ln(n+1)$ et que $\ln(n+1) \to +\infty$ quand $n \to +\infty$ alors $H_n \to +\infty$ quand $n \to +\infty$.
- 4. $u_{n+1} u_n = H_{n+1} H_n \ln(n+1) + \ln(n) = \frac{1}{n+1} (\ln(n+1) \ln(n)) \le 0$ d'après la première question. Donc $u_{n+1} u_n \le 0$. Ainsi $u_{n+1} \le u_n$ et la suite (u_n) est décroissante.
 - Enfin comme $H_n \ge \ln(n+1)$ alors $H_n \ge \ln(n)$ et donc $u_n \ge 0$.
- 5. La suite (*u_n*) est décroissante et minorée (par 0) donc elle converge vers un réel γ. Ce réel γ s'appelle *la constante d'Euler* (d'après Leonhard Euler, 1707-1783, mathématicien d'origine suisse). Cette constante vaut environ 0,5772156649... mais on ne sait pas si γ est rationnel ou irrationnel.

Correction de l'exercice 7

- 1. La fonction polynomiale $P(x) := x^3 3x + 1$ est continue et dérivable sur \mathbb{R} et sa dérivée est $P'(x) = 3x^2 3$, qui est strictement négative sur]-1,+1[. Par conséquent P est strictement décroissante sur]-1,+1[. Comme P(0)=1>0 et P(1/2)=-3/8<0 il en résulte grâce au théorème des valeurs intermédiaires qu'il existe un réel unique $\alpha \in]0,1/2[$ tel que $P(\alpha)=0$.
- 2. Comme $f(x) x = (x^3 3x + 1)/9$ il en résulte que α est l'unique solution de l'équation f(x) = x dans [0, 1/2].
- 3. Comme $f'(x) = (x^2 + 2)/3 > 0$ pour tout $x \in \mathbb{R}$, on en déduit que f est strictement croissante sur \mathbb{R} . Comme f(0) = 1/9 et $\lim_{x \to +\infty} f(x) = +\infty$, on en déduit que $f(\mathbb{R}^+) = [1/9, +\infty[$. Comme $x_1 = f(x_0) = 1/9 > 0$ alors $x_1 > x_0 = 0$; f étant strictement croissante sur \mathbb{R}^+ , on en déduit par récurrence que $x_{n+1} > x_n$ pour tout $n \in \mathbb{N}$ ce qui prouve que la suite (x_n) est croissante.
- 4. Un calcul simple montre que f(1/2) < 1/2. Comme $0 = x_0 < 1/2$ et que f est croissante on en déduit par récurrence que $x_n < 1/2$ pour tout $n \in \mathbb{N}$ (en effet si $x_n < 1/2$ alors $x_{n+1} = f(x_n) < f(1/2) < 1/2$).
- 5. D'après les questions précédentes, la suite (x_n) est croissante et majorée, elle converge donc vers un nombre réel $\ell \in]0,1/2]$. De plus comme $x_{n+1} = f(x_n)$ pour tout $n \in \mathbb{N}$, on en déduit par continuité de f que $\ell = f(\ell)$. Comme f(1/2) < 1/2, On en déduit que $\ell \in]0,1/2[$ et vérifie l'équation $f(\ell) = \ell$. D'après la question 2, on en déduit que $\ell = \alpha$ et donc (x_n) converge vers α .

Correction de l'exercice 8

Remarquons d'abord que $1 - \frac{1}{k^2} = \frac{1-k^2}{k^2} = \frac{(k-1)(k+1)}{k \cdot k}$. En écrivant les fractions de u_n sous la cette forme, l'écriture va se simplifier radicalement :

$$u_n = \frac{(2-1)(2+1)}{2.2} \frac{(3-1)(3+1)}{3.3} \cdots \frac{(k-1)(k+1)}{k.k} \frac{(k)(k+2)}{(k+1).(k+1)} \cdots \frac{(n-1)(n+1)}{n.n}$$

Tous les termes des numérateurs se retrouvent au dénominateur (et vice-versa), sauf aux extrémités. D'où :

$$u_n = \frac{1}{2} \frac{n+1}{n}.$$

Donc (u_n) tends vers $\frac{1}{2}$ lorsque n tend vers $+\infty$.

Correction de l'exercice 9

- 1. 0.
- 2. 1.
- 3. 7/30.
- 4. 1/2.
- 5. 1.
- 6. -3/2.
- 7. 1.
- 8. 3.
- 9. 1:2.
- 10. 3/4.
- 11. 0.
- 12. 0.
- 13. 1/3.

Correction de l'exercice 10

1. La suite (u_n) est strictement croissante, en effet $u_{n+1} - u_n = \frac{1}{(n+1)!} > 0$. La suite (v_n) est strictement décroissante :

$$v_{n+1} - v_n = u_{n+1} - u_n + \frac{1}{(n+1)!} - \frac{1}{n!} = \frac{1}{(n+1)!} + \frac{1}{(n+1)!} - \frac{1}{n!} = \frac{1}{n!} (\frac{2}{n} - 1).$$

Donc à partir de $n \ge 2$, la suite (v_n) est strictement décroissante.

- 2. Comme $u_n \le v_n \le v_2$, alors (u_n) est une suite croissante et majorée. Donc elle converge vers $\ell \in \mathbb{R}$. De même $v_n \ge u_n \ge u_0$, donc (v_n) est une suite décroissante et minorée. Donc elle converge vers $\ell' \in \mathbb{R}$. De plus $v_n u_n = \frac{1}{n!}$. Et donc $(v_n u_n)$ tend vers 0 ce qui prouve que $\ell = \ell'$.
- 3. Supposons que $\ell \in \mathbb{Q}$, nous écrivons alors $\ell = \frac{p}{q}$ avec $p, q \in \mathbb{N}$. Nous obtenons pour $n \geq 2$:

$$u_n \leq \frac{p}{q} \leq v_n$$
.

Ecrivons cette égalité pour n=q: $u_q \leq \frac{p}{q} \leq v_q$ et multiplions par q!: $q!u_q \leq q!\frac{p}{q} \leq q!v_q$. Dans cette double inégalité toutes les termes sont des entiers! De plus $v_q = u_q + \frac{1}{q!}$ donc:

$$q!u_q \le q!\frac{p}{q} \le q!u_q + 1.$$

Donc l'entier $q! \frac{p}{q}$ est égal à l'entier $q!u_q$ ou à $q!u_q+1=q!v_q$. Nous obtenons que $\ell=\frac{p}{q}$ est égal à u_q ou à v_q . Supposons par exemple que $\ell=u_q$, comme la suite (u_n) est strictement croissante alors $u_q < u_{q+1} < \cdots < \ell$, ce qui aboutit à une contradiction. Le même raisonnement s'applique en supposant $\ell=v_q$ car la suite (v_n) est strictement décroissante. Pour conclure nous avons montré que ℓ n'est pas un nombre rationnel.

En fait ℓ est le nombre $e = \exp(1)$.

Correction de l'exercice 11

1.

$$u_{n+1}^2 - a = \frac{1}{4} \left(\frac{u_n^2 + a}{u_n} \right)^2 - a$$
$$= \frac{1}{4u_n^2} (u_n^4 - 2au_n^2 + a^2)$$
$$= \frac{1}{4} \frac{(u_n^2 - a)^2}{u_n^2}$$

- 2. Il est clair que pour $n \ge 0$ on a $u_n > 0$. D'après l'égalité précédente pour $n \ge 0$, $u_{n+1}^2 a \ge 0$ et comme u_{n+1} est positif alors $u_{n+1} \ge \sqrt{a}$.
 - Soit $n \ge 1$. Calculons le quotient de u_{n+1} par u_n : $\frac{u_{n+1}}{u_n} = \frac{1}{2} \left(1 + \frac{a}{u_n^2} \right)$ or $\frac{a}{u_n^2} \le 1$ car $u_n \ge \sqrt{a}$. Donc $\frac{u_{n+1}}{u_n} \le 1$ et donc $u_{n+1} \le u_n$. La suite $(u_n)_{n \ge 1}$ est donc décroissante.
- 3. La suite $(u_n)_{n\geqslant 1}$ est décroissante et minorée par \sqrt{a} donc elle converge vers une limite $\ell>0$. D'après la relation

$$u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$$

quand $n \to +\infty$ alors $u_n \to \ell$ et $u_{n+1} \to \ell$. À la limite nous obtenons la relation

$$\ell = \frac{1}{2} \left(\ell + \frac{a}{\ell} \right).$$

La seule solution positive est $\ell = \sqrt{a}$. Conclusion (u_n) converge vers \sqrt{a} .

4. La relation

$$u_{n+1}^2 - a = \frac{(u_n^2 - a)^2}{4u_n^2}$$

s'écrit aussi

$$(u_{n+1} - \sqrt{a})(u_{n+1} + \sqrt{a}) = \frac{(u_n - \sqrt{a})^2 (u_n + \sqrt{a})^2}{4u_n^2}.$$

Donc

$$u_{n+1} - \sqrt{a} = (u_n - \sqrt{a})^2 \frac{1}{4(u_{n+1} + \sqrt{a})} \left(\frac{u_n + \sqrt{a}}{u_n}\right)^2$$

$$\leq (u_n - \sqrt{a})^2 \frac{1}{4(2\sqrt{a})} \left(1 + \frac{\sqrt{a}}{u_n}\right)^2$$

$$\leq (u_n - \sqrt{a})^2 \frac{1}{2\sqrt{a}}$$

5. Par récurrence pour n = 1, $u_1 - \sqrt{a} \le k$. Si la proposition est vraie rang n, alors

$$u_{n+1} - \sqrt{a} \leqslant \frac{1}{2\sqrt{a}} (u_n - \sqrt{a})^2$$

$$\leqslant \frac{1}{2\sqrt{a}} (2\sqrt{a})^2 \left(\left(\frac{k}{2\sqrt{a}} \right)^{2^{n-1}} \right)^2$$

$$\leqslant 2\sqrt{a} \left(\frac{k}{2\sqrt{a}} \right)^{2^n}$$

6. Soit $u_0 = 3$, alors $u_1 = \frac{1}{2}(3 + \frac{10}{3}) = 3$, $166 \dots$ Comme $3 \le \sqrt{10} \le u_1$ donc $u_1 - \sqrt{10} \le 0.166 \dots$ Nous pouvons choisir k = 0, 17. Pour que l'erreur $u_n - \sqrt{a}$ soit inférieure à 10^{-8} il suffit de calculer le terme u_4 car alors l'erreur (calculée par la formule de la question précédente) est inférieure à $1,53 \times 10^{-10}$. Nous obtenons $u_4 = 3,16227766 \dots$ Bilan $\sqrt{10} = 3,16227766 \dots$ avec une précision de 8 chiffres après la virgule. Le nombre de chiffres exacts double à chaque itération, avec u_5 nous aurions (au moins) 16 chiffres exacts, et avec u_6 au moins $32 \dots$

Correction de l'exercice 12 A

- Si u₀ ≤ u₁ alors comme f est croissante f(u₀) ≤ f(u₁) donc u₁ ≤ u₂, ensuite f(u₁) ≤ f(u₂) soit u₂ ≤ u₃,... Par récurrence on montre que (u_n) est décroissante. Comme elle est minorée par a alors elle converge. Si u₀ ≤ u₁ alors la suite (u_n) est croissante et majorée par b donc converge.
 - Notons ℓ la limite de $(u_n)_n$. Comme f est continue alors $(f(u_n))$ tend vers $f(\ell)$. De plus la limite de $(u_{n+1})_n$ est aussi ℓ . En passant à la limite dans l'expression $u_{n+1} = f(u_n)$ nous obtenons l'égalité $\ell = f(\ell)$.
- 2. La fonction f définie par $f(x) = \frac{4x+5}{x+3}$ est continue et dérivable sur l'intervalle [0,4] et $f([0,4]) \subset [0,4]$. La fonction f est croissante (calculez sa dérivée). Comme $u_0 = 4$ et $u_1 = 3$ alors (u_n) est décroissante. Calculons la valeur de sa limite ℓ . ℓ est solution de l'équation f(x) = x soit 4x + 5 = x(x+3). Comme $u_n \geqslant 0$ pour tout n alors $\ell \geqslant 0$. La seule solution positive de l'équation du second degré 4x + 5 = x(x+3) est $\ell = \frac{1+\sqrt{21}}{2} = 2,7912\dots$
- 3. Si f est décroissante alors $f \circ f$ est croissante (car $x \le y \Rightarrow f(x) \ge f(y) \Rightarrow f \circ f(x) \le f \circ f(y)$). Nous appliquons la première question avec la fonction $f \circ f$. La suite $(u_0, u_2 = f \circ f(u_0), u_4 = f \circ f(u_2), \ldots)$ est monotone et convergente. De même pour la suite $(u_1, u_3 = f \circ f(u_1), u_5 = f \circ f(u_3), \ldots)$.

4. La fonction f définie par $f(x)=(1-x)^2$ est continue et dérivable de [0,1] dans [0,1]. Elle est décroissante sur cet intervalle. Nous avons $u_0=\frac{1}{2}, u_1=\frac{1}{4}, u_2=\frac{9}{16}, u_3=0, 19\dots$ Donc la suite (u_{2n}) est croissante, nous savons qu'elle converge et notons ℓ sa limite. La suite (u_{2n+1}) et décroissante, notons ℓ' sa limite. Les limites ℓ et ℓ' sont des solutions de l'équation $f\circ f(x)=x$. Cette équation s'écrit $(1-f(x))^2=x$, ou encore $(1-(1-x)^2)^2=x$ soit $x^2(2-x)^2=x$. Il y a deux solutions évidentes 0 et 1. Nous factorisons le polynôme $x^2(2-x)^2-x$ en $x(x-1)(x-\lambda)(x-\mu)$ avec λ et μ les solutions de l'équation x^2-3x+1 : $\lambda=\frac{3-\sqrt{5}}{2}=0,3819\dots$ et $\mu=\frac{3+\sqrt{5}}{2}>1$. Les solutions de l'équation $f\circ f(x)=x$ sont donc $\{0,1,\lambda,\mu\}$. Comme (u_{2n}) est croissante et que $u_0=\frac{1}{2}$ alors (u_{2n}) converge vers $\ell=1$ qui est le seul point fixe de [0,1] supérieur à $\frac{1}{2}$. Comme (u_{2n+1}) est décroissante et que $u_1=\frac{1}{4}$ alors (u_{2n+1}) converge vers $\ell'=0$ qui est le seul point fixe de [0,1] inférieur à $\frac{1}{4}$.

Correction de l'exercice 13

1. Soient a,b>0. On veut démontrer que $\sqrt{ab}\leqslant \frac{a+b}{2}$. Comme les deux membres de cette inégalité sont positifs, cette inégalité est équivalente à $ab\leqslant (\frac{a+b}{2})^2$. De plus,

$$ab \leqslant \left(\frac{a+b}{2}\right)^2 \Leftrightarrow 4ab \leqslant a^2 + 2ab + b$$

$$\Leftrightarrow 0 \leqslant a^2 - 2ab + b^2$$

ce qui est toujours vrai car $a^2 - 2ab + b^2 = (a - b)^2$ est un carré parfait. On a donc bien l'inégalité voulue.

2. Quitte à échanger *a* et *b* (ce qui ne change pas les moyennes arithmétique et géométrique, et qui préserve le fait d'être compris entre *a* et *b*), on peut supposer que *a* ≤ *b*. Alors en ajoutant les deux inégalités

$$a/2 \leqslant a/2 \leqslant b/2$$

$$a/2 \leqslant b/2 \leqslant b/2$$
,

on obtient

$$a \leqslant \frac{a+b}{2} \leqslant b.$$

De même, comme tout est positif, en multipliant les deux inégalités

$$\sqrt{a} \leqslant \sqrt{a} \leqslant \sqrt{b}$$

$$\sqrt{a} \leqslant \sqrt{b} \leqslant \sqrt{b}$$

on obtient

$$a \leqslant \sqrt{ab} \leqslant b$$
.

- 3. Il faut avant tout remarquer que pour tout n, u_n et v_n sont strictement positifs, ce qui permet de dire que les deux suites sont bien définies. On le démontre par récurrence : c'est clair pour u_0 et v_0 , et si u_n et v_n sont strictement positifs alors leurs moyennes géométrique (qui est u_{n+1}) et arithmétique (qui est v_{n+1}) sont strictement positives.
 - (a) On veut montrer que pour chaque n, $u_n \le v_n$. L'inégalité est claire pour n = 0 grâce aux hypothèses faites sur u_0 et v_0 . Si maintenant n est plus grand que 1, u_n est la moyenne géométrique de u_{n-1} et v_{n-1} et v_n est la moyenne arithmétique de u_{n-1} et v_{n-1} , donc, par 1., $u_n \le v_n$.
 - (b) On sait d'après 2. que $u_n \le u_{n+1} \le v_n$. En particulier, $u_n \le u_{n+1}$ i.e. (u_n) est croissante. De même, d'après 2., $u_n \le v_{n+1} \le v_n$. En particulier, $v_{n+1} \le v_n$ i.e. (v_n) est décroissante.
 - (c) Pour tout n, on a $u_0 \le u_n \le v_n \le v_0$. (u_n) est donc croissante et majorée, donc converge vers une limite ℓ . Et (v_n) est décroissante et minorée et donc converge vers une limite ℓ' . Nous savons maintenant que $u_n \to \ell$, donc aussi $u_{n+1} \to \ell$, et $v_n \to \ell'$; la relation $u_{n+1} = \sqrt{u_n v_n}$ s'écrit à la limite :

$$\ell = \sqrt{\ell \ell'}$$
.

De même la relation $v_{n+1} = \frac{u_n + v_n}{2}$ donnerait à la limite :

$$\ell' = \frac{\ell + \ell'}{2}.$$

Un petit calcul avec l'une ou l'autre de ces égalités implique $\ell = \ell'$.

Il y a une autre méthode un peu plus longue mais toute aussi valable.

Définition Deux suites (u_n) et (v_n) sont dites *adjacentes* si

- 1. $u_n \leq v_n$,
- 2. (u_n) est croissante et (v_n) est décroissante,
- 3. $\lim (u_n v_n) = 0$.

Alors, on a le théorème suivant :

Théorème: Si (u_n) et (v_n) sont deux suites adjacentes, elles sont toutes les deux convergentes et ont la même limite.

Pour appliquer ce théorème, vu qu'on sait déjà que (u_n) et (v_n) vérifient les points 1 et 2 de la définition, il suffit de démontrer que $\lim (u_n - v_n) = 0$. On a d'abord que $v_n - u_n \ge 0$. Or, d'après (a)

$$v_{n+1} - u_{n+1} \le v_{n+1} - u_n = \frac{v_n - u_n}{2}.$$

Donc, si on note $w_n = v_n - u_n$, on a que $0 \le w_{n+1} \le w_n/2$. Donc, on peut démontrer (par récurrence) que $0 \le w_n \le \frac{w_0}{2^n}$, ce qui implique que $\lim_{n\to\infty} w_n = 0$. Donc $v_n - u_n$ tend vers 0, et ceci termine de démontrer que les deux suites (u_n) et (v_n) sont convergentes et ont même limite en utilisant le théorème sur les suites adjacentes.

Correction de l'exercice 14

Notons $f_n: [0,1] \longrightarrow \mathbb{R}$ la fonction définie par :

$$f_n(x) = \sum_{k=1}^n x^k - 1.$$

- La fonction f_n est continue sur [0,1]. De plus f_n(0) = −1 < 0 et f_n(1) = n − 1 ≥ 0. D'après le théorème des valeurs intermédiaires, f_n, admet un zéro dans l'intervalle [0,1]. De plus elle strictement croissante (calculez sa dérivée) sur [0,1] donc ce zéro est unique.
- 2. Calculons $f_n(a_{n-1})$.

$$f_n(a_{n-1}) = \sum_{k=1}^n a_{n-1}^k - 1$$

$$= a_{n-1}^n + \sum_{k=1}^{n-1} a_{n-1}^k - 1$$

$$= a_{n-1}^n + f_{n-1}(a_{n-1})$$

$$= a_{n-1}^n \text{ (car } f_{n-1}(a_{n-1}) = 0 \text{ par définition de } a_{n-1}).$$

Nous obtenons l'inégalité

$$0 = f_n(a_n) < f_n(a_{n-1}) = a_{n-1}^n.$$

Or f_n est strictement croissante, l'inégalité ci-dessus implique donc $a_n < a_{n-1}$. Nous venons de démontrer que la suite $(a_n)_n$ est décroissante.

Remarquons avant d'aller plus loin que $f_n(x)$ est la somme d'une suite géométrique :

$$f_n(x) = \frac{1 - x^{n+1}}{1 - x} - 2.$$

Évaluons maintenant $f_n(\frac{1}{2})$, à l'aide de l'expression précédente

$$f_n(\frac{1}{2}) = \frac{1 - (\frac{1}{2})^{n+1}}{1 - \frac{1}{2}} - 2 = -\frac{1}{2^n} < 0.$$

Donc $f_n(\frac{1}{2}) < f_n(a_n) = 0$ entraı̂ne $\frac{1}{2} < a_n$.

Pour résumer, nous avons montré que la suite $(a_n)_n$ est strictement décroissante et minorée par $\frac{1}{2}$.

3. Comme $(a_n)_n$ est décroissante et minorée par $\frac{1}{2}$ alors elle converge, nous notons ℓ sa limite :

$$\frac{1}{2} \leqslant \ell < a_n$$
.

Appliquons f_n (qui est strictement croissante) à cette inégalité :

$$f_n\left(\frac{1}{2}\right) \leqslant f_n(\ell) < f_n(a_n),$$

qui s'écrit aussi :

$$-\frac{1}{2^n} \leqslant f_n(\ell) < 0,$$

et ceci quelque soit $n \ge 1$. La suite $(f_n(\ell))_n$ converge donc vers 0 (théorème des "gendarmes"). Mais nous savons aussi que

$$f_n(\ell) = \frac{1 - \ell^{n+1}}{1 - \ell} - 2;$$

donc $(f_n(\ell))_n$ converge vers $\frac{1}{1-\ell}-2$ car $(\ell^n)_n$ converge vers 0. Donc

$$\frac{1}{1-\ell}-2=0$$
, d'où $\ell=\frac{1}{2}$.