Exercices maths 1ère

Exercices sur les suites série 6

 Signalez une ERREUR | 

Rémunération dans une entreprise

Une entreprise, propose pour recruter un nouvel employé deux types de rémunération :

Type 1 : Salaire initial de 1 200 € par mois avec augmentation annuelle du salaire mensuel de 100 €.

Type 2 : Salaire initial de 1 100 € par mois avec augmentation annuelle du salaire mensuel de 8%.

1°) Dans le cas de la rémunération de type 1, on note u(0) le salaire mensuel initial, et u(n) le salaire mensuel après n années. Donner les valeurs de u(0), u(1), u(2).

2°) Dans le cas de la rémunération de type 2, on note v(0) le salaire mensuel initial, et v(n) le salaire mensuel après n années. Donner les valeurs de v(0), v(1), v(2).

3°) Donner une expression générale de u(n) et v(n) en fonction de n.  Calculer u(5) et v(5) ; u(8) et v(8).

4°) Le nouvel employé compte rester 10 ans dans l’entreprise. Quelle est la rémunération la plus avantageuse ?

Corrigé de cet exercice

Population d’un village

Un village avait 3123 habitants en 1995.  Le nombre d’habitants diminue de 12% tous les ans.

On note P(n) le nombre d’habitants du village pour l’année n.

1°) Donner les valeurs de P(1995) et P(1996). (on arrondira à l’entier le plus proche)

2°) Justifier que la suite P(n) est une suite géométrique et donner sa raison.

3°) Calculer P(2001). (on arrondira à l’entier le plus proche)

4°) En quelle année le nombre d’habitants aura-t-il diminué des deux tiers par rapport à 1995 ?

5°) Représenter graphiquement la suite P(n) pour n variant de 1995 à 2005.

Corrigé de cet exercice

Suite géométrique

On considère v(n) une suite géométrique de raison q.

1°) Justifier que  v(3) = v(2) x q   et que   v(4) = v(3) x q

En déduire que  v(4) = v(2) x q2

2°) Montrer que  v(8) = v(5) x q3

3°) Quelle relation peut-on écrire entre v(7) , v(2) et q ?  Justifier.

4°) On suppose dans cette question que  v(0) = 3  et  q = 2.

Calculer  v(5) .

Donner sans démonstration la valeur de v(100) .

Corrigé de cet exercice

Capital et suites numériques

Un capital de 12 618 euros est placé le 01/01/2000 avec un taux d’intérêt annuel de 6,3%.

Tous les ans les intérêts sont cumulés au capital.

On note  C(0) le capital correspondant au 1er janvier de l’année 2000. On a donc C(0) = 12 618.

On note, pour tout entier n, C(n) le capital correspondant au 1er janvier de l’année 2000+n.

1°) Calculer  C(1), C(2), C(3).  (on arrondira les résultats au centime d’euro près)

2°) Démontrer que pour tout entier n on a   C(n+1) = C(n) x 1,063.

3°) Compléter le tableau suivant  (on arrondira les résultats au centime d’euro près)

Rang n de l’année

0

1

2

3

4

5

6

7

8

9

10

Capital  C(n)

12 618

4°) Représenter graphiquement la suite C(n).

Corrigé de cet exercice

info Poursuivez vos révisions en effectuant la série 2 des exercices sur les suites numériques , série 3, série 4, série 5, série 1, série 7 en première S.



Rejoignez-nous sur notre page facebook afin de suivre l'actualité du site, être informé(e) des différents concours avec des prix à gagner ainsi que répondre à certaines énigmes ou problèmes.

Rejoignez-nous sur facebook

D'autres documents similaires


Inscription gratuite à Mathovore. Rejoignez les 109689 Mathovoristes, inscription gratuite.