Exercices maths 1ère

Exercices sur les fonctions série 4

 Signalez une ERREUR | 

La série 4 des exercices sur la comparaison de fonction et sa parité en classe de première S.Ces problèmes sur les fonctions numériques sont à télécharger en PDF.

Etude d’une fonction

On considère la fonction f définie par :

f(x)=\frac{(1-x^2)^2}{1+x^2}

1. Déterminer son ensemble de définition.

2. Démontrer que f est une fonction positive sur \mathbb{R}.

3. Etudier la parité de la fonction f.

4. Tracer soigneusement la représentation graphique Cf de la fonction f.

On se limitera à l’intervalle [- 3 ; 3 ].

5. Donner, par lecture graphique, la valeur du maximum de la fonction f sur :

a. l’intervalle [-1;1].

b. l’intervalle [-2;1].

6. Résoudre l’inéquation f(x)\leq 1.

Corrigé de cet exercice

Comparaison de fonctions

Le but de cet exercice est de comparer les fonctions f et g définies par :

f(x)=\sqrt{1+x}  et  g(x)=1+\frac{x}{2}  sur l’intervalle [-1;+\infty[.

1. Montrer que f(x)\geq 0 et g(x)\geq 0 pour tout x\in[-1;+\infty[.

2. Calculer (f(x))^2 et (g(x))^2.

3. démontrer que  (f(x))^2 \leq (g(x))^2 pour tout   x\in[-1;+\infty[.

4. En déduire une comparaison de f et g sur l’intervalle  [-1;+\infty[.

5. Tracer sur un même repère les représentation graphique de f et g sur l’intervalle  [-1;+\infty[.

Corrigé de cet exercice

Parité

Etudier la parité des fonctions suivantes :

f(x)=x+\frac{1}{x}  sur \mathbb{R}^*

g(x)=x+\frac{1}{x^2} sur \mathbb{R}^*

Corrigé de cet exercice

Composée

On considère la fonction f définie par f(x)=x^2-1 sur  \mathbb{R} .

Donner une formule explicite de la fonction fog lorsque :

g(x)=\sqrt{1-x} sur ]-\infty;1]   puis g(x)=1-\frac{1}{x}  sur \mathbb{R}^*.

Corrigé de cet exercice

infoPoursuivez vos révisions en résolvant les exercices de la série 2 sur les fonctions numériques, série 3, série 1, série 5, série 6, série 7 en première S.



Rejoignez-nous sur notre page facebook afin de suivre l'actualité du site, être informé(e) des différents concours avec des prix à gagner ainsi que répondre à certaines énigmes ou problèmes.

Rejoignez-nous sur facebook

D'autres documents similaires


Inscription gratuite à Mathovore. Rejoignez les 109676 Mathovoristes, inscription gratuite.