Devoir Mathématiques Nº 5 (2 heures)

Exercice 1 : ______(4 points)

Soit (E) l'équation différentielle sur $\mathbb R$:

$$y' = 2y - 3y^2$$

On cherche une solution de (E) sur \mathbb{R} telle que :

$$u(0) = \frac{1}{4}$$

- 1. Soit u une solution de (E) sur \mathbb{R} qui ne s'annule pas sur \mathbb{R} . On définit la fonction v sur \mathbb{R} par $v = \frac{1}{u}$. Démontrer l'équivalence des deux affirmations suivantes :
 - (i) u est solution de (E) et $u(0) = \frac{1}{4}$.
 - (ii) v est solution de (E'): y' = -2y + 3 et v(0) = 4.
- 2. Résoudre (E') et déterminer v.
- 3. En déduire la résolution de (E) et la fonction u.

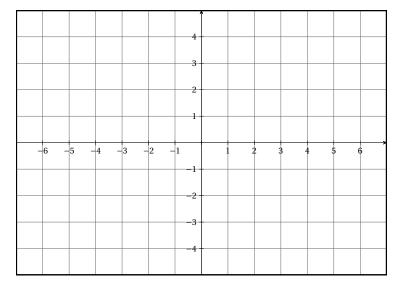
Exercice 2: ______(3 points)

Représenter les ensembles suivants sur le graphique ci-dessous (on ne demande pas de justification) :

$$\begin{split} \mathscr{E}_1 &= \left\{ M(z) \; / \; \arg(z-2\mathrm{i}+1) = \frac{2\pi}{3} \; \left(2\pi\right) \right\} \\ \mathscr{E}_2 &= \left\{ M(z) \; / \; \arg\left(\frac{z-2\mathrm{i}+3}{z-3-2\mathrm{i}}\right) = \pi \; \left(2\pi\right) \right\} \end{split}$$

$$\mathscr{E}_3 = \left\{ M(z) \ / \ Z = \mathrm{i} \frac{z - 2\mathrm{i}}{z + 3\mathrm{i}} \in \mathbb{R}_+ \right\}$$

$$\mathcal{E}_4 = \{ M(z) / |z + 2 + i| = |\bar{z} - 2i| \}$$



Exercice 3: ______(1,5 points)

1. Ecrire sous forme algébrique

$$a_1 = \frac{2-i}{5-2i}$$
 $a_2 = (1+3i)(5-i)$

2. Résoudre dans $\mathbb C$ l'équation $(E): 4z+3\mathrm{i}(\overline{z-5i})+2-3\mathrm{i}=0$

Exercice 4:	3	poir	nts)

Soit
$$z = i(\sqrt{6} - \sqrt{2}) - (\sqrt{6} + \sqrt{2})$$

- 1. Déterminer la forme algébrique puis une forme exponentielle de z^2 .
- 2. En déduire une forme exponentielle de z.

Soient $A,\,B,\,C$ et D les points d'affixes respectives :

$$a = 2 + 3i\sqrt{3}$$
, $b = -\frac{\sqrt{3}}{3}i$, $c = -4 - 3i\sqrt{3}$, $d = -2 + \frac{\sqrt{3}}{3}i$

- 1. Placer les points A, B, C et D sur une figure.
- 2. Démontrer que le quadrilatère ABCD est un parallélogramme.
- 3. Démontrer que $\frac{d-b}{c-a}$ est un imaginaire pur. En déduire la nature du parallélogramme ABCD.

Le plan est rapporté à un repère orthonormal direct $(O; \vec{u}, \vec{v})$.

1. Résoudre dans l'ensemble $\mathbb C$ des nombres complexes, l'équation d'iinconnue z :

$$z^2 - 2\sqrt{3}z + 4 = 0.$$

- 2. On considère les points A d'affixe $z_{\rm A}=\sqrt{3}-{\rm i}$, B d'affixe $z_{\rm B}=\sqrt{3}+{\rm i}$ et C le milieu de [OB] d'affixe $z_{\rm C}$.
 - a) Déterminer la forme exponentielle de z_A , z_B et z_C .
 - b) Sur une figure, placer les points A, B et C, en prenant 2 cm pour unité.
 - c) Montrer que le triangle OAB est équilatéral.
- 3. Soit D l'image de C par la rotation r de centre O, d'angle $-\frac{\pi}{2}$ et E l'image de D par la translation t de vecteur $2\vec{v}$.
 - a) Placer les points D et E sur une figure.
 - b) Montrer que l'affixe $z_{\rm E}$ du point E vérifie : $z_{\rm E} = \frac{1}{2} \left[1 + \mathrm{i} \left(4 \sqrt{3} \right) \right]$.
 - c) Montrer que $OE = BE = \sqrt{5 2\sqrt{3}}$.
- 4. Dans cette question, toute trace de recherche, etc ...hors barême.

Montrer que les points A, C et E sont alignés.

