Cours maths terminale

Continuité d’une fonction

 Signalez une ERREUR | 

La continuité d’une fonction numérique et le théorème des valeurs intermédiaires en terminale S.Nous terminerons ce cours par l’interprétation graphique et les propriétés.

Remarque :

Les programmes limitent la continuité à une approche intuitive qui est de considérer qu’une fonction est continue sur un intervalle I si sa courbe représentative sur I peut être tracée entièrement sans lever le crayon.

I.Notion de continuité d’une fonction

Propriété : (admise)

Les fonctions usuelles (affines, carré, inverse, racine carrée, valeur absolue) sont continues
sur tout intervalle inclus dans leur ensemble de définition.
Toute fonction construite algébriquement (par somme, produit, inverse ou composée) à
partir de fonctions usuelles est continue sur tout intervalle de son ensemble de définition.
On convient qu’une flèche oblique dans un tableau de variation traduit la continuité et la
stricte monotonie de la fonction sur l’intervalle considéré.
Une fonction dérivable sur un intervalle est continue sur cet intervalle.

Remarque :

attention Attention, la réciproque de cette dernière propriété est fausse.
Par exemple, la fonction valeur absolue x \mapsto  \left |x \right | est continue en 0 mais non dérivable en 0.

Méthode : interpréter graphiquement la continuité d’une fonction.
Par convention, une fonction est continue là où elle est tracée. S’il n’y a pas continuité en x_0 :
\star le symbole bille rouge indique le point de la courbe de coordonnées (x_0 ; f (x_0)) ;
\star le symbole bille rose vide indique un point qui n’appartient pas à la courbe mais dont l’ordonnée est égale à la limite à gauche ou à droite en x_0.

Exercice d’application :

Déterminer graphiquement les intervalles sur lesquels f est continue.
1) Soit la fonction partie entière f : x \mapsto  \left |x \right |.

continuité de la fonction partie entière

2) Soit la fonction f représentée ci-dessous.

continuité d'une fonction quelconque

II. Théorème des valeurs intermédiaires

Théorème : cas général.

Soit f une fonction définie sur un intervalle I contenant deux réels a et b tels que a < b.
Si f est continue sur [a ; b], alors pour tout réel k compris entre f (a) et f (b), il existe au moins
un réel c appartenant à [a ; b] tel que f (c) = k.

Remarque :

f prend au moins une fois toute valeur intermédiaire entre f (a) et f (b).
Autrement dit, l’équation f (x) = k a au moins une solution dans [a ; b] et, sur [a ; b], la
courbe représentative de f coupe la droite d’équation y = k en un point au moins.

Exemple :

Soit f la fonction définie sur [0 ; 6] par f (x) =\frac{x^3}{4}-\frac{9}{4}x^2 + 6x - 3.

Théorème des valeurs intermédiares

On dresse le tableau de variation de f . f admet pour minimum −3 et pour maximum 6.
f est continue sur [0 ; 6].

tableau de variation

Donc, d’après le théorème des valeurs intermédiaires, f prend toutes les valeurs de [−3 ; 6]. En particulier, l’équation f (x) = 0 a au moins une solution dans [0 ; 6].

Théorème : cas d’une fonction strictement monotone.

Soit f une fonction définie sur un intervalle I contenant deux réels a et b tels que a < b.
Si f est continue et strictement monotone sur [a ; b], alors pour tout réel k compris entre f (a)
et f (b), il existe un unique réel c appartenant à [a ; b] tel que f (c) = k.


Rejoignez-nous sur notre page facebook afin de suivre l'actualité du site, être informé(e) des différents concours avec des prix à gagner ainsi que répondre à certaines énigmes ou problèmes.

Rejoignez-nous sur facebook

D'autres documents similaires


Inscription gratuite à Mathovore. Rejoignez les 109488 Mathovoristes, inscription gratuite.