• cours en quatrième
  • 0

Le calcul littéral et double distributivité

Cours sur le calcul littéral faisant intervenir la simple et double distributivité.Factoriser et développer des expressions littérales.

 

I. Développer et réduire une expression.

0. Préambule: règle des signes.

Afin de pouvoir être à l’aise avec le calcul littéral (ou algébrique), il faut impérativement maîtriser la règle des signes.

 

 

 

.

 

Multiplié par + -
+ + -
- - +

 

Définition :

Développer une expression c’est l’écrire sous la forme d’une somme de termes la plus simple possible.

• on développe les produits,

• on supprime les parenthèses,

• on regroupe les termes de même nature .

 

1. Dimple distributivité de la multiplication sur l’addition et la soustraction : (rappels de 5ème )

Propriétés :

Soient a, b, k des nombres quelconques.


k x (a + b) = k x a + k x b ( simple distributivité)

 


k x (a – b) = k x a – k x b (simple distributivité)

 

 

Exemples :

 

separateurTexte Le calcul littéral et double distributivité

12 × 108

= 12 × ( 100 + 8 )

= 12 × 100 + 12 × 8

= 1200 + 96

= 1296

14 × 999

= 14 × ( 1000 – 1 )

= 14 × 1000 – 14 × 1

= 14000 – 14

= 13 986

separateurTexte Le calcul littéral et double distributivité

A = 5 (X + 3)

A = 5xX + 5×3

A = 5X + 15

separateurTexte Le calcul littéral et double distributivité

B = 7 (2X – 3Y)

B = 7x2X- 7x3Y

B = 14X – 21Y

2. Suppression des parenthèses :

 

a. Parenthèses précédées du signe :

Règle n° 1 :

on supprime des parenthèses précédées du signe + , sans changer l’expression des termes inclus dans la parenthèse.

Exemples :

 

3 + ( 4,1 + 3 ) = 3 + 4,1 + 3 = – 4,1 .

2 + ( 2 – 10,7 ) = 2 + 2 – 10,7 = – 6,7 .

x + ( – 2,1 – 3,7 ) = x – 2,1 – 3,7 = x – 5,8 .

b. Parenthèses précédées du signe « - » :

Règle n° 2 :

on supprime les parenthèses précédées du signe – ,

à condition de changer les signes des termes inclus dans la parenthèse.

•Exemples :

 

a – (b + c) = a – b – c

a – (-b + c) = a + b – c

a – (b + c) = a – b – c

3 – ( 4,1 + 3 ) = 3 – 4,1 – 3 = – 4,1

2 ( 2 + 10,7 ) = 2 – 2 – 10,7 = – 10,7

x – ( – 2,1 + 3,7 ) = x + 2,1 – 3,7 = x – 1,6

A = 4x + 28 – (6x² – 2x + 12x – 4)

A = 4x + 28 – 6x² + 2x – 12x + 4

On regroupe les termes de même nature :

A = – 6x² – 6x + 32

B = 3x² + x – (x² + 3x – 1)

B = 3x² + x – x² – 3x + 1

B = 3x² – x² + x – 3x + 1

B = 2x² – 2x + 1

II. Double distributivité :

Proposition :

Soient a, b, c, d quatres nombres. (a + b) (c + d) = a x c + a x d + b x c + b x d (double distributivité)

•Exemples :

• Développer et réduire A = (X + 5)(X + 1)

A = (X + 5)(X + 1)

A = X × X + X × 1 + 5 × X + 5 × 1

A = X² + X+ 5X + 5

A = X² + 6X + 5

• Développer et réduire B = (X + 3)(X – 2)

B = (X + 3)(X – 2)

On développe en appliquant la règle des signes .

B = X × X – X × 2 + 3 × X – 3 × 2

B = X² -2X+ 3X – 6

B = X² + X – 6

• Développer et réduire B = (2X – 4)(5X + 3)

B = (2X – 4)(5X + 3)

On développe en appliquant la règle des signes.

B = 2X × 5X + 2X × 3 -4 × 5X – 4 × 3

B = 10X² – 6X – 20X – 12

B = 10X² – 26X – 12

III. Factoriser une somme de termes

Définition :

Factoriser une somme de termes, c’est la transformer en un produit de facteurs.

 

Méthode :

 

On recherche un facteur commun aux différents termes de la somme.

A = 4X + 12 (4 est un facteur commun à 4x et à 12)

On fait apparaître le facteur commun

A = 4 x X + 4 x 3

On applique la règle de la distributivité (dans le sens de la factorisation)

A = 4 x (X + 3)

separateurTexte Le calcul littéral et double distributivité

 

B = 5a² – 25a

B = 5a x a – 5a x 5

B = 5a (a – 5)

separateurTexte Le calcul littéral et double distributivité

 

C = (2x + 1)(7x – 3) + (2x + 1)( x + 2)

C = (2x + 1)[(7x – 3) + ( x + 2)]

C = (2x + 1)(7x – 3 + x + 2)

C = (2x + 1)(8x – 1)

separateurTexte Le calcul littéral et double distributivité

 

D = (5x – 1)(3x – 7) – (5x – 1)(5x – 3)

D= (5x – 1) [(3x – 7) – (5x – 3)]

D = (5x – 1) (3x – 7 – 5x + 3)

D = (5x – 1) (-2x – 4)

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Vous pouvez utiliser ces balises et attributs HTML : <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Des difficultés avec un exercice ou un problème, devoir maison de mathématiques?
Demandez de l'aide sur le FORUM.